MAT 320 - Spring 2019 - Exam 4
Instructor: Dr. Francesco Strazzullo
Name

I certify that I did not receive third party help in completing this test (sign) \qquad
Instructions. Technology is allowed on this exam. Each problem is worth 10 points. If you use formulas or properties from our book, make a reference. You are expected to use a CAS for some computations, then upload your files in Eagleweb.
SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).

1) Let $\mathcal{C}=\left\{C_{1}=\left[\begin{array}{cc}1 & 0 \\ 1 & -1\end{array}\right], C_{2}=\left[\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right], C_{3}=\left[\begin{array}{ll}0 & 2 \\ 0 & 2\end{array}\right], C_{4}=\left[\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right]\right\}$ be a subset of the real vector space of the 2-by-2 matrices $M_{2,2}$.
(a) Prove that \mathcal{C} is a basis of $M_{2,2}$.
(b) Given $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$, compute the coordinate vector $[A]_{\mathcal{C}}$.
(2) $C=\left[\left[c_{1}\right]_{\varepsilon}\left[c_{2}\right]_{\mathcal{E}}\left[c_{3}\right]_{\mathcal{E}}\left[c_{4}\right]_{\mathcal{E}}\right]=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 0 & 0 \\ -1 & 0 & 2 & 2\end{array}\right] \xrightarrow{\operatorname{RR\delta F}} I_{4} \Rightarrow D$ THEN $l_{\text {IS A MAXIMAL SET OF LIN. INT). VECTORS } \Rightarrow \text { BASIS. }}$

$$
\begin{aligned}
& \text { (b) }[A]_{e} \text { is the solviloor of aha system } C \vec{x}=[A]_{\varepsilon}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

2) Consider $\mathcal{C}=\left\{\boldsymbol{p}_{1}=1-x^{2}, p_{2}=3+x, \boldsymbol{p}_{3}=x+x^{3}, \boldsymbol{p}_{4}=2+x^{3}\right\}$ in P_{3}, the real vector space of polynomials of degree at most 3 .
(a) Prove that \mathcal{C} is a basis for P_{3}.
(b) Compute $\left[1-3 x+x^{2}-3 x^{3}\right]_{c}$.
$(2)_{i}$

$$
\begin{aligned}
& \operatorname{RREF}(C)=I_{4} \Rightarrow \text { MAX. SETIDFIND. VECTOrS } \Rightarrow \text { BASIS. } \\
& \begin{array}{l}
\text { (b) } \left.\left[1-3 x+x^{2}-3 x^{3}\right] \text { is The satutian of } C \vec{x}=\left[1-3 x+x^{2}-3 x^{3}\right]_{\varepsilon_{2}}\right]=\left[\begin{array}{c}
1 \\
-3 \\
1 \\
-3
\end{array}\right] \\
\operatorname{RREFF}\left(\left[\begin{array}{c}
c \\
-1 \\
-3 \\
-3
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
I_{4} \\
2 / 5 \\
-1 / 75 \\
2 / 5
\end{array}\right] \Rightarrow\left[\begin{array}{l}
1-3 x+x^{2}-3 x^{3} \\
e
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 / 5 \\
-17 / 5 \\
2 / 5
\end{array}\right]
\end{array}
\end{aligned}
$$

3) Consider two bases $\mathcal{B}=\left\{\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ -1 \\ 2\end{array}\right]\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]\right\}$ of \mathbb{R}^{3}.
(a) Find $P_{\mathcal{C}}^{\mathcal{B}}$, the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.
(b) Compute $[x]_{\mathcal{B}}$ for $x=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$.
(c) Use part (a) and (b) to compute $[x]_{\mathcal{C}}$.

$$
\begin{aligned}
& {[\vec{x}]_{E}=P_{E}^{B}[\vec{x}]_{B} \text { AND }[\vec{x}]_{e}=P_{e}^{\beta}[\vec{x}]_{B} \Rightarrow D} \\
& P_{e}^{\beta \beta}[\vec{x}]_{B}=\left(P_{\varepsilon}^{e}\right)^{-1}[\vec{x}]_{E}=\left(P_{\varepsilon}^{e}\right)^{-1} P_{\varepsilon}^{B}[\vec{x}]_{B} \Rightarrow \\
& \Rightarrow P_{e}^{B}=\left(P_{\varepsilon}^{e}\right)^{-1} P_{\varepsilon}^{B}\left(o r P_{e}^{\varepsilon} P_{\varepsilon}^{63}\right) \\
& \text { (a) } P_{\varepsilon}^{B}=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], P_{E}^{e}=\left[\begin{array}{ccc}
0 & 2 & 0 \\
-1 & -1 & 2 \\
1 & 2 & 1
\end{array}\right] \Rightarrow P^{B}=\frac{1}{6}\left[\begin{array}{ccc}
-8 & -1 & 2 \\
6 & 3 & 0 \\
2 & 1 & 4
\end{array}\right] \\
& \text { (b) }\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]_{B}=\left(\begin{array}{c}
P_{B}^{B}
\end{array}\right)^{-1}\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1.5 \\
-2 \\
-.5
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
3 \\
-4 \\
-1
\end{array}\right] \\
& \text { (e) }\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]_{e}=P_{e}^{B}\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]_{B}=\frac{1}{6}\left[\begin{array}{c}
-11 \\
3 \\
-1
\end{array}\right]
\end{aligned}
$$

4) Consider two bases $\mathcal{B}=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right\}$ and $\mathcal{C}=\left\{\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right\}$ of a real vector space \mathbb{V} such that

$$
b_{1}=c_{1}+3 c_{2} \text { and } b_{2}=-2 c_{1}+5 c_{2}
$$

Suppose that x is a vector in \mathbb{V} such that $x=2 \boldsymbol{b}_{1}-3 b_{2}$, that is $[x]_{\mathcal{B}}=\left[\begin{array}{c}2 \\ -3\end{array}\right]$.
(a) Find $P_{\mathcal{C}}^{\mathcal{B}}$, the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.
(b) Compute $[x]_{\mathcal{C}}$.
(a) $\left.p_{e}^{\beta}=\left[\vec{b}_{1}\right]_{e}\left[\overrightarrow{b_{2}}\right]_{e}\right]=\left[\begin{array}{cc}1 & -2 \\ 3 & 5\end{array}\right]$
(b) $[\vec{x}]_{e}=P_{e}^{B}[\vec{x}]_{B}=\left[\begin{array}{c}8 \\ -9\end{array}\right]$
5) Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear mapping defined by

$$
L\left(\boldsymbol{b}_{1}\right)=3 \boldsymbol{b}_{1}+\boldsymbol{b}_{3}, \quad L\left(\boldsymbol{b}_{2}\right)=\boldsymbol{b}_{1}+3 \boldsymbol{b}_{2}-2 \boldsymbol{b}_{3}, \text { and } L\left(\boldsymbol{b}_{3}\right)=\boldsymbol{b}_{1}-\boldsymbol{b}_{2}-\boldsymbol{b}_{3}
$$

where $\mathcal{B}=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}\right\}$ is a basis of \mathbb{R}^{3}. Find $[L]_{\mathcal{B}}$, the matrix of the linear operator L relative to \mathcal{B}.

$$
[L]_{B}=\left[\left[L\left(L \sigma_{B}\right]_{B}-\left[L\left(L_{B}\right)\right]_{B}\right]=\left[\begin{array}{ccc}
3 & 1 & 1 \\
0 & -2 \\
1 & -1
\end{array}\right]\right.
$$

6) Let $L: P_{2} \rightarrow P_{2}$ be the linear mapping defined by

$$
L(1-2 x)=1+x^{2}, \quad L\left(1+x+x^{2}\right)=1+x, \text { and } L\left(x+x^{2}\right)=1-x+2 x^{2}
$$

where $\mathcal{B}=\left\{\boldsymbol{p}_{1}=1-2 x, \boldsymbol{p}_{2}=1+x+x^{2}, \boldsymbol{p}_{3}=x+x^{2}\right\}$ is a basis of P_{2}, the real vector space of polynomiald of degree at most 2. Let $\mathcal{E}=\left\{1, x, x^{2}\right\}$ be the standard basis of P_{2}.
(HONOR: consider $L: P_{3} \rightarrow P_{3}$ with $L\left(1+x^{3}\right)=2-x, \mathcal{B}=\left\{p_{1}, p_{2}, p_{3}, p_{4}=1+x^{3}\right\}$, and $\mathcal{E}=$ $\left\{1, x, x^{2}, x^{3}\right\}$, over P_{3}, the real vector space of polynomials of degree at most 3.)
(a) Find $P_{\mathcal{B}}^{\mathcal{B}}$, the change-of-coordinates matrix from \mathcal{B} to \mathcal{E}.
(b) Find $[L]_{\mathcal{E}}^{\mathcal{B}}$, the matrix of the linear operator L relative to \mathcal{B} and \mathcal{E}.
(c) Find $[L]_{\mathcal{B}}$, the matrix of the linear operator L relative to \mathcal{B}.
(d) Find $L(2+x)$.

$$
\begin{aligned}
& \text { (a) } P_{\varepsilon}^{\beta}=\left[\begin{array}{lll}
1 & 1 & 0 \\
-2 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] \quad\left(\text { Honor } P_{\varepsilon}^{B B}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-2 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0
\end{array}\right]\right) \\
& \text { (b) }[L]_{\varepsilon}^{B}=\left[\left[L\left(b_{1}^{0}\right)\right]_{\varepsilon}-\left[L\left(\vec{b}_{b}\right)\right]_{\varepsilon}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -1 \\
1 & 0 & 2
\end{array}\right]\left(\operatorname{Karan}\left[\begin{array}{cccc}
1 & 1 & 2 & 2 \\
0 & 1 & -1 & 1 \\
1 & 0 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right) \\
& \text { (e) }[L]_{B B}=\left(P_{E}^{B}\right)^{-1}[L]_{\varepsilon}^{B}=\frac{1}{2}\left[\begin{array}{ccc}
1 & -1 & 3 \\
1 & 3 & -1 \\
1 & -3 & 5
\end{array}\right] \text { (manor } \frac{1}{2}\left[\begin{array}{ccc}
1 & -1 & 3
\end{array}\right] \\
& \text { (d) }[L(2+x)]_{E}=[L]_{\mathcal{E}}^{B}[2+x]_{B}=[L]_{\mathcal{B}}^{B}\left(P_{E}^{B}\right)^{-1}[2+x]_{\varepsilon} \\
& =\frac{1}{2}\left[\begin{array}{ccc}
0 & -1 & 3 \\
4 & 2 & -4 \\
-4 & -3 & 7
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-1 \\
10 \\
-11
\end{array}\right] \Rightarrow L(2+x)=-\frac{1}{2}+5 x-\frac{11}{2} x^{2}
\end{aligned}
$$

7) Let $L: P_{4} \rightarrow \mathbb{R}^{3}$ be the linear mapping defined by

$$
L(1)=(1,-1,1)^{\top}, \quad L(x)=(1,1,2)^{\top}, \quad L\left(x^{2}\right)=(-1,3,0)^{\top}, \quad L\left(x^{3}\right)=(1,-1,2)^{\top} \text {, and } L\left(x^{4}\right)=(-1,5,2)^{\top}
$$

(a) Find a basis for $\operatorname{Ker}(L)$.
(b) Find a basis for Range (L).
(c) Use part (a) and (b) to check the Rank-Nullity Theorem.
(d) Specify why L is or is not injective or surjective.

IN THR STANDARD BASES $\varepsilon_{4}=\left\{1, x_{1} x^{2}, x^{3}, x^{4}\right\}$ AND $\varepsilon^{3}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
(a) Koe (L) is Gonorteld By vetons whass compoovints in E_{4} aks
A BASB OF Null $([L])=S P_{A N}\left(\left[\begin{array}{r}2 \\ -1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}4 \\ -2 \\ 0 \\ -1 \\ 1\end{array}\right]\right) \Rightarrow$
$\Rightarrow \operatorname{kic}(L)=\operatorname{SPAN}\left(2-x+x^{2}, 4-2 x-x^{2}+x^{3}\right)$

A bassis of $\operatorname{CoL}([L])=\operatorname{Span}\left(\left[\begin{array}{c}-1 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ 2\end{array}\right],\left[\begin{array}{c}{[} \\ -1 \\ 2\end{array}\right]\right)=\mathbb{R}^{3}$

$$
\begin{aligned}
& \text { (e) } \operatorname{RanN}=\operatorname{dinh}(\operatorname{Prvog}(L))=3 ; \operatorname{arnt} T=\operatorname{dim}(\operatorname{Kac}(L))=2 \text {; } \\
& \text { Th: } \quad \operatorname{Bank}+\text { NuLITY }=\sin (\operatorname{DOMAINL})=\sin \left(P_{i}\right)=5 \\
& \text { (d). Lisdot insective Bochaso } \operatorname{Voc}(L) \neq\{\overrightarrow{0}\} \\
& \text { - } L \text { is surbactive bechuss parvé }(L)=\text { codamain }=\mathbb{R}^{3} \text {. }
\end{aligned}
$$

MAT 320 - Spring 2019 - Exam 4- In Class
Name \qquad

SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).
8) Let $L: P_{1} \rightarrow P_{1}$ be the linear mapping defined by

$$
L(1+3 x)=1+x, \quad \text { and } L(2-x)=3+3 x
$$

where $\mathcal{B}=\left\{\boldsymbol{p}_{1}=1+3 x, \boldsymbol{p}_{2}=2-x\right\}$ is a basis of P_{1}, the real vector space of polynomials of degree at most

1. Let $\mathcal{E}=\{1, x\}$ be the standard basis of P_{1}.
(HONOR: consider $L: P_{2} \rightarrow P_{2}$ with $L\left(x+x^{2}\right)=x^{2}, \mathcal{B}=\left\{\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{p}_{3}=\mathfrak{X}+x^{2}\right\}$, and $\mathcal{E}=\left\{1, x, x^{2}\right\}$, over P_{2}, the real vector space of polynomials of degree at most 2.)
(a) Find $P_{\mathcal{E}}^{\mathcal{B}}$, the change-of-coordinates matrix from \mathcal{B} to \mathcal{E}.
(b) Find $[L]_{\mathcal{E}}^{\mathcal{B}}$, the matrix of the linear operator L relative to \mathcal{B} and \mathcal{E}.
(c) Find $[L]_{\mathcal{B}}$, the matrix of the linear operator L relative to \mathcal{B}.
(d) Find $L(2+x)$.

$$
\begin{aligned}
& \text { a) } B=P_{E}^{(B)}=\left[\begin{array}{cc}
1 & 2 \\
3 & -1
\end{array}\right] \quad \text { (tarora: } P_{\varepsilon}^{B B}=\left[\begin{array}{ccc}
1 & 2 & 0 \\
3 & -1 & 1 \\
0 & 0 & 1
\end{array}\right] \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) }[L(\vec{x})]_{B}=[L]_{B}[\vec{x}]_{B} \text { THEA}[L]_{B}=\left(P_{\varepsilon}^{B}\right)^{-1}[L]_{\varepsilon}^{B}= \\
& =\frac{1}{7}\left[\begin{array}{ll}
3 & 9 \\
2 & 6
\end{array}\right] \quad\left(\text { maNor: }[L]_{B}=\frac{1}{7}\left[\begin{array}{lll}
3 & 9 & -2 \\
2 & 6 & 1 \\
0 & 0 & 7
\end{array}\right]\right) \\
& \text { d) }[\vec{x}]_{\varepsilon}=P_{\varepsilon}^{B B}[\vec{x}]_{B} \Rightarrow[\vec{x}]_{B}=\left(P_{\varepsilon}^{B}\right)^{-1}[\vec{x}]_{\varepsilon} \Rightarrow[2+x]_{B}=\left(\left(P_{\varepsilon}^{B}\right)^{-1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]^{3}=\right. \\
& =\frac{1}{7}\left[\begin{array}{l}
4 \\
5
\end{array}\right] \Rightarrow[L(2+x)]_{\varepsilon}=[L]_{\varepsilon}^{B}[\vec{x}]_{B}=\frac{1}{7}\left[\begin{array}{l}
10 \\
10
\end{array}\right] \Rightarrow L(2+x)=\frac{19}{7}+\frac{10}{7} x \\
& \text { (anon: } \left.[2+x]_{B}=\frac{1}{7}\left[\begin{array}{l}
4 \\
5 \\
0
\end{array}\right] \Rightarrow[L(2+x)]_{E}=\frac{1}{7}\left[\begin{array}{c}
19 \\
19 \\
0
\end{array}\right] \Rightarrow L(2+x)=\frac{19}{7}+\frac{19}{7} x\right)
\end{aligned}
$$

9) Let $L: P_{2} \rightarrow \mathbb{R}^{2}$ be the linear mapping defined by

$$
L(1)=(1,-2)^{T}, \quad L(x)=(-1,2)^{T}, \quad \text { and } L\left(x^{2}\right)=(2,3)^{T} .
$$

(a) Find a basis for $\operatorname{Ker}(L)$.
(b) Find a basis for Range (L).
(c) Use part (a) and (b) to check the Rank-Nullity Theorem.
(d) Specify why L is or is not injective or surjective.
(N The Standand basss $\varepsilon_{2}=\left\{1, x, x^{2}\right\}$ and $\varepsilon^{2}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ The Matrix associatoly to L is $[L]=[L]_{\varepsilon^{\varepsilon}}^{\varepsilon_{2}}=\left[L\left(E_{2}\right)\right]_{\varepsilon^{2}}=$

$$
=\left[L(1) L(x) L\left(x^{2}\right)\right]=\left[\begin{array}{rrr}
1 & -1 & 2 \\
-2 & 2 & 3
\end{array}\right] \xrightarrow{R R \tilde{F} F}\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(a) A BABIS of Ker (L) has vectons of compor'OUTS WRTR ε_{2} GNEN By A Basis of $\operatorname{Nall}([L]) \stackrel{\text { RamF }}{=} \operatorname{SPAN}\left(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right) \Rightarrow \operatorname{Nect}(L)=\operatorname{sPaN}(\vec{p})$ WHRE $[\vec{P}]_{\varepsilon_{2}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] \Rightarrow \vec{P}=1+x$. (BASA of $\operatorname{har}(L)$)
(b) A basis of rane (l) has vect. of conp. W.rt E^{2} GIVEN BY A
 $=\operatorname{SPAN}\left(\left[\begin{array}{c}1 \\ -2\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]\right)$
(e) $\operatorname{Rank}(L)=\operatorname{dim}(\operatorname{Ranga}(L))=2 ; \operatorname{NuLLTt}(L)=\operatorname{dim}(\operatorname{Kar}(L))=1$.

TH: RANK + NWLLTY = "DCMENSIOd oF DOMAIN"

$$
2+1=3=\operatorname{dim} p_{2}
$$

$(d) . L$ is not insective, becauso $\operatorname{Ker}(L) \neq\left\{0^{0}\right\}$.

- L is surséctivé, bécause $\operatorname{range}(l)=R^{2}$ codomain.

