MAT 320 - Spring 2019 - Exam 3
Instructor: Dr. Francesco Strazzullo \qquad
I certify that I did not receive third party help in completing this test (sign) \qquad
Instructions. Technology is allowed on this exam. Each problem is worth 10 points. If you use formulas or properties from our book, make a reference. You are expected to use a CAS for some computations, then upload your files in Eagleweb.
SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).

1) Let $H=\left\{a+b x^{2}+c x^{3} \in P_{3}\right.$ such that $\left.a=b+c\right\}$ be a subset of the real vector space of polynomials of degree at most 3. If H is a subspace of P_{3} then provide one of its bases, otherwise show at least one property of subspaces that H does not satisfy.

$$
\begin{aligned}
& \text { let } p_{1}=a_{1}+b_{1} x^{2}+c_{1} x^{3}=b_{1}+c_{1}+b_{1} x^{2}+c_{1} x^{3} \text { AND } \\
& P_{2}=b_{2}+c_{2}+b_{2} x^{2}+c_{2} x^{3} \text { Bs in H, AND } t_{1}, t_{2} \text { BS SAC. } \\
& t_{1} p_{1}+t_{2 p_{2}}=\left(t_{1}\left(b_{1}+c_{1}\right)+t_{1} b_{1} x^{2}+t_{1} e_{l} x^{3}\right)+\left(t_{2}\left(b_{2}+c_{2}\right)+t_{2} b_{2} x^{2}+t_{3} c_{3} x^{3}\right) \\
& =\left(t_{1}\left(b_{1}+c_{1}\right)+t_{2}\left(b_{2}+c_{2}\right)\right)+\left(t_{1} b_{1}+t_{2} b_{2}\right) x^{2}+\left(t_{1} c_{1}+t_{2} t_{2}\right) x^{3} \\
& =\left(\left(t_{1} b_{1}+t_{2} b_{2}\right)+\left(t_{1} c_{1}+t_{2} c_{2}\right)\right)+b_{3} x^{2}+c_{3} x^{3} \text { in H. }
\end{aligned}
$$

Then His closed vader linear combirations.

Pinite $=b\left(1+x^{2}\right)+c\left(1+x^{3}\right) \not \Leftrightarrow H=\operatorname{span}\left(1+x^{2}, 1+x^{3}\right)$
A BASis Tron H is $\left\{1+x^{2}, 1+x^{3}\right\}$
2) Let $\mathcal{C}=\left\{C_{1}=\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right], C_{2}=\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right], C_{3}=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], C_{4}=\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]\right\}$ be a subset of the real vector space of the 2-by-2 matrices $M_{2,2}$.
(a) Use the standard basis $\mathcal{E}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ to reduce \mathcal{C} to a basis $\overline{\mathcal{C}}$ of $\langle\mathcal{C}\rangle$ (Hint: for each $C_{i} \in \mathcal{C}$ write C_{i} as a linear combination of the vectors of \mathcal{E}.)
(b) Use part (a) to extend $\overline{\mathcal{C}}$ to a basis for $M_{2,2}$.

LET $\varepsilon=\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}$, THEN: $C_{1}=1 E_{11}+2 E_{21}-E_{22} j$

$$
\begin{aligned}
& C_{2}=2 E_{11}+E_{12}+E_{21} ; C_{3}=E_{11}+E_{12} ; C_{4}=2 E_{11}+3 E_{21}-E_{22} . \\
& \overrightarrow{0}=t_{1} C_{1}+t_{2} C_{2}+t_{3} C_{3}+t_{4} C_{4} \quad \text { IF AND ONLY IF } \\
& \vec{t}_{5}=\left[\begin{array}{c}
C_{1} \\
t_{2} \\
t_{3} \\
t_{4}
\end{array}\right]
\end{aligned}
$$

is A solution of $C \vec{X}=\overrightarrow{0}$, when e

$$
C=\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 1 & 1 & 0 \\
2 & 1 & 0 & 3 \\
-1 & 0 & 0 & -1 \\
p & p & p & p
\end{array}\right]
$$

(a) $\vec{e}=\left\{c_{1}, c_{2}, c_{3}\right\}$
(l) cooling at RREF (C), E 22 completes To ABASIS:

$$
B=\left\{c_{1}, c_{2} c_{3}, e_{22}\right\}
$$

3) Consider $\mathcal{C}=\left\{\boldsymbol{p}_{1}=x^{2}, \boldsymbol{p}_{2}=3 x, \boldsymbol{p}_{3}=x+x^{3}, \boldsymbol{p}_{4}=2+x^{3}\right\}$ in P_{3}, the real vector space of polynomials of degree at most 3 .
(a) Use the standard basis $\mathcal{E}=\left\{1, x, x^{2}, x^{3}\right\}$ to prove that \mathcal{E} is a basis for P_{3} (write down what the definition of a basis is and which theorem you use to justify your answer).
(b) (HONOR only) Write $1-3 x+x^{2}-2 x^{3}$ as a linear combination of the vectors in \mathcal{C}.
(a) BASMS = "LINEACY INDEPENDSNT SET DF GENERATIDRS"

Thishatane $\vec{b}=\vec{\theta}$ and C is LiN. ingot. maximal sot (Jusonen NME 6)
(b) Equivalion so solving $\mathbb{C} \vec{x}=\left[\begin{array}{c}1 \\ -3 \\ 1 \\ -2\end{array}\right] \Leftrightarrow \vec{x}=C^{-1}\left[\begin{array}{c}1 \\ -3 \\ -2\end{array}\right]=\frac{1}{6}\left[\begin{array}{cccc}0 & 0 & 6 & 0 \\ -1 & 6 & 0 & -2 \\ -2 & 0 & 0 & 4 \\ 2 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}1 \\ -3 \\ -2 \\ -2\end{array}\right]$

$$
=\left[\begin{array}{c}
1 / 6 \\
-1 / 3 \\
-5 / 3 \\
1 / 3
\end{array}\right] \Rightarrow 1-3 x+x^{2}-2 x^{3}=\overrightarrow{P_{1}}-\frac{1}{6} \vec{p}_{2}-\frac{5}{3} \vec{p}_{3}+\frac{1}{3} \vec{p}_{4}^{0}
$$

$$
\begin{aligned}
& \text { IF } \varepsilon=\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}, \vec{e}_{4}\right\} \text { THEN: } \overrightarrow{p_{1}}=\vec{e}_{3} ; \vec{p}_{2}=3 \vec{e}_{2} ; \vec{p}_{s}=\vec{e}_{2}^{-p}+\vec{e}_{4} j \\
& \vec{P}_{4}=2 \vec{e}_{1}+\vec{e}_{4} \text {. Tran } \vec{\theta}=t_{1} \vec{P}_{1}+\ldots+t_{4} \vec{P}_{4} \text { if ANDD andy IF } \\
& \vec{t}=\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3} \\
t_{2}
\end{array}\right] \text { is a solvtin of } \overrightarrow{0}=C \vec{x} \text {, where } \quad C=\left[\begin{array}{llll}
0 & 0 & 0 & 2 \\
0 & 3 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \text {. }
\end{aligned}
$$

4) Consider $\mathcal{C}=\left\{\boldsymbol{p}_{1}=1, \boldsymbol{p}_{2}=3 x, \boldsymbol{p}_{3}=x+x^{2}, \boldsymbol{p}_{4}=2+x^{3}\right\}$ in $P_{3}[0,1]$, the real vector space of polynomials of degree at most 3 over the closed interval $[0,1]$, with inner product $\boldsymbol{p} \cdot \boldsymbol{q}=\int_{0}^{1} \boldsymbol{p}(x) \boldsymbol{q}(x) d x$.
Use the Gram-Schmidt procedure to orthogonalize \mathcal{C}. Check your results.
(HONOR ONLY) Generate an orthonormal basis. Check your results.

$$
\begin{aligned}
& \text { Whits } e^{\prime}=\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}, \vec{q}_{4}\right\} \text { The ontitopodalzation of } C \text {. } \\
& \vec{q}_{1}=\vec{p}_{1} ; \quad \vec{q}_{2}=\vec{p}_{2}-\frac{\vec{q}_{1} \cdot \vec{p}_{2}}{\vec{p}_{1} \vec{q}_{1}} \vec{q}_{1} \frac{-3 x-\frac{3}{2} \cdot(1)=3 x-\frac{3}{2}}{1} \\
& \vec{q}_{1} \cdot \vec{q}_{i}=\int_{0}^{1} 1^{2} d x=1 ; \vec{q}_{i} \cdot \vec{p}_{2}=\int_{\theta}^{1} 3 x d x-\frac{3}{2}\left[x^{2}\right]_{0}^{1}=\frac{3}{2} \\
& \vec{q}_{3}=\vec{p}_{3}-\frac{\overrightarrow{q_{1}} \cdot \vec{p}_{3}}{\overrightarrow{q_{1}} \cdot \overrightarrow{q_{1}}} \vec{q}_{1}-\frac{\vec{q}_{2} \cdot \vec{p}_{3}}{\vec{q} \cdot \vec{q}} \overrightarrow{q_{2}}=x+x^{2}-\frac{5}{6}-\frac{q_{3}}{3} \cdot \frac{1}{2}\left(3 x-\frac{3}{2}\right)=\frac{1}{6}-x+x^{2} \\
& \begin{array}{l}
\left.\left.\vec{q}_{1} \cdot \overrightarrow{p_{3}}=\int_{0}^{1} x+x^{2} d x=\left[x^{2} / 2+x^{3} / 3\right]_{0}^{1}=\frac{5}{6} ; \quad \overrightarrow{q_{2}} \cdot \overrightarrow{q_{2}}=\int_{0}^{1}\left(3 x-\frac{3}{2}\right)^{2} d x=\right]\right) \\
=\frac{-1}{3} \int_{0}^{1} 3\left(3 x-\frac{3}{2}\right)^{2} d x=\frac{1}{3}\left[\frac{\left(3 x-\frac{3}{2}\right)^{3}}{3}\right]_{0}^{1}=\frac{3}{4} ; \overrightarrow{q_{2}} \cdot \overrightarrow{p_{3}}=\int_{0}^{1}\left(3 x-\frac{3}{2}\right)\left(x+x^{2}\right) d x=\frac{1}{2}
\end{array} \\
& \vec{q}_{4}=\vec{p}_{4}-\frac{\overrightarrow{q_{1}} \cdot p_{4}}{\overrightarrow{p_{1}} \cdot \overrightarrow{q_{1}}} \overrightarrow{q_{1}}-\frac{\vec{q}_{2} \cdot \vec{p}_{4}}{\overrightarrow{q_{2}} \cdot \vec{q}_{2}} \vec{q}_{2}-\frac{\overrightarrow{q_{3}} \cdot \vec{p}_{4}}{\vec{q}_{3} \cdot \vec{q}_{3}^{0}} \vec{q}_{3}=\frac{1}{\bar{A}}-\frac{1}{2 \theta}+\frac{3}{5} x-\frac{3}{2} x^{2}+x^{3} \\
& \left.\overrightarrow{q_{1}} \cdot \vec{p}_{w}=\frac{9}{4}, \overrightarrow{0} \cdot \overrightarrow{2} \cdot \vec{p}_{w}=\frac{9}{40} ; \vec{q}_{3}^{2} \cdot \vec{w}=\frac{1}{120}, \overrightarrow{0_{2}} \cdot \overrightarrow{0}=\frac{1}{180}\right) \\
& e^{\prime}=\left\{1,-\frac{3}{2}+3 x, \frac{1}{6}-x+x^{2},-\frac{61}{20}+\frac{28}{5} x-\frac{13}{2} x^{2}+x^{3}\right\} \\
& \text { Honor } \vec{q}_{u} \cdot \vec{q}_{4}=\frac{1}{2800} \text {, DEFWN } \vec{u}_{i}=\frac{1}{11 \overrightarrow{\sigma_{i}} \|} \vec{q}_{i} \text {, WIRE } \\
& \|\vec{q}\|=\sqrt{\vec{q} \cdot \vec{q}}=\sqrt{\int_{0}^{1}[q(x)]^{2} d x}, \quad \vec{u}_{1}=\vec{q}=1 ; \vec{u}_{2}=-\sqrt{3}-2 \sqrt{3} x ; \\
& \vec{u}_{3}=6 \sqrt{5} \cdot \vec{q}_{3} ; \quad \vec{u}_{u}=20 \sqrt{7} \vec{q}_{4}
\end{aligned}
$$

5) Consider $A=\left[\begin{array}{cccc}3 & -1 & 0 & 1 \\ 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 0 & -1\end{array}\right]$. You can use a CAS only to compute determinants, factor polynomials, or rowreduce matrices, to complete the following steps (each worth $\mathbf{1 0}$ points).
a. Compute the eigenvalues of A.
b. For each eigenvalue λ, find a basis of the corresponding eigenspace and state the geometric multiplicity of λ.
6) $\operatorname{det}(A-\lambda I)=(1-\lambda)\left|\begin{array}{ccc}3-\lambda & -1 & 1 \\ 1 & 2-\lambda & -2 \\ 1 & 1 & -1-\lambda\end{array}\right|=\lambda(\lambda-1)^{2}(\lambda-3) \Rightarrow \lambda=0,1,3$.
$-\operatorname{RREF}(A-I)=\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \vdots \\ 0 & 0 & 0\end{array}\right] \Rightarrow V_{1} V_{1} \operatorname{Nalll}(A-I)=\operatorname{SPAN}\left(\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right) \Rightarrow G A,=1 ; \quad B_{1}=\left\{\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right\}$

7) Let $\operatorname{char}(B)=\lambda^{6}+\lambda^{5}-\lambda^{4}-\lambda^{3}$. Determine the eigenvalues of B and state their algebraic multiplicities. You cannot use a CAS.
C hor $(B)=\lambda^{5}(\lambda+1)-\lambda^{3}(\lambda+1)=\lambda^{3}(\lambda+1)\left(\lambda^{2}-1\right)=\lambda^{3}(\lambda+1)^{2}(\lambda-1)$ $\lambda^{3}=0 \Rightarrow \lambda=0$ WITh ALC, MULT. 3
$(\lambda+1)^{2}=0 \Rightarrow \lambda=-1$ wiTh Alb. MULT. 2
$\theta-1=0 \Rightarrow \quad \forall=1 \quad$ with ALK. WULT. 1
8) Let $A=\left[\begin{array}{rrr}0 & 0 & 2 \\ 0 & -2 & 0 \\ 4 & 0 & 2\end{array}\right]$. Check if: $P=\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$ diagonalizes A.

$$
P A P^{-1}=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right] \text {, ThEN } P \text { diAberAlizes A (on rattan } P^{-1} \text {) }
$$

8) You can use a CAS only to compute determinants, factor polynomials, or row-reduce matrices. Diagonalize the

$$
\text { will } P^{-1} A P=\left[\begin{array}{rrr}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

$$
\begin{aligned}
& \text { matrix } A=\left[\begin{array}{rrr}
1 & 0 & 3 \\
0 & -2 & 0 \\
3 & 0 & 1
\end{array}\right] \text {. } \\
& \operatorname{det}(A-\lambda I)=-(\lambda+2)^{2}(\lambda-4)<\begin{array}{l}
t=-2, \text { ALL. uLt }=2 \\
\lambda=4,
\end{array} \\
& \text { - } \operatorname{RRof}(A+2 I)=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow V_{-2}=\operatorname{Null}_{\text {ul }}(A+2 I)=\operatorname{sen}\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right) \\
& \text { - } \operatorname{RREF}(A-4 I)=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow V_{4}=\operatorname{Null}(A-4 I)=\operatorname{sind}\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)
\end{aligned}
$$

\qquad

SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).
9) Consider $A=\left[\begin{array}{cccc}1 & -1 & 0 & 1 \\ 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1\end{array}\right]$. You can use a CAS only to compute determinants, factor polynomials, or rowreduce matrices, to complete the following steps (each worth 10 points).
a. Compute the eigenvalues of A.
b. For each eigenvalue λ, find a basis of the corresponding eigenspace and state the geometric multiplicity of λ.
a) $\operatorname{det}\left(A-\lambda I_{n}\right)=\left|\begin{array}{cccc}1-\lambda & -1 & 0 & 1 \\ 1 & 2-\lambda & 0 & 2 \\ 0 & 0 & 1-\lambda & 1 \\ 1 & 1 & 0 & 1-\lambda\end{array}\right|=(1-\lambda) \left\lvert\, \begin{array}{cccccccc}1-\lambda & -1 & 1 & 1 & 1-\lambda & -1 & 1 \\ 1 & 2-\lambda & 2 & 1 & 1 & 2-\lambda & 1 \\ 1 & 1 & 1-\lambda & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1\end{array}\right.$

$$
\begin{aligned}
& =(1-\lambda)\left((1-\lambda)^{2}(2-\lambda)-2+1-2(1-\lambda) t(1-\lambda)-(2-\lambda)\right)^{-2}{ }^{-2} \\
& =(1-\lambda)(2-\lambda)\binom{\left.\lambda^{2}-2 z-1\right)}{\vec{v}_{1}} \begin{array}{l}
t=1 \\
\lambda=2 \\
\lambda=\frac{2 \pm \sqrt{8}}{2}=1 \pm \sqrt{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \operatorname{RREF}\left(A-(1+\sqrt{2}) I_{4}\right)=\left[\begin{array}{ccc}
1 & 0 & 1 \\
8 & 0 & -\sqrt{2}-1 \\
0 & 1 & 1 \\
0 & 0 & -\sqrt{2} / 2
\end{array}\right] \Rightarrow V_{1+\sqrt{2}}=\operatorname{Null}\left(A-(1+\sqrt{2}) I_{4}\right)=\operatorname{SPAN}\left(\left[\begin{array}{c}
-1 \\
1+\sqrt{2} \\
\sqrt{2} / 2 \\
1
\end{array}\right]\right) \\
& g_{2+\sqrt{2}}=1
\end{aligned}
$$

CHECK: $P=\left[\begin{array}{llll}\overrightarrow{v_{1}} & \vec{v}_{2} & \vec{V}_{3} & \vec{V}_{6}\end{array}\right]$ will DAGGoralize A :

$$
P^{-1} A P=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 1 & -\sqrt{2} & 0 \\
0 & 0 & 0 & 1+\sqrt{2}
\end{array}\right]
$$

