Mat 321 - Spring 2015 -Exam 2

Instructor: Dr. Francesco Strazzullo

Name \qquad
I certify that I did not receive third party help in completing this test (sign) \qquad
Instructions. Technology and instructor's notes (including the formula sheets from our book) are allowed on this ex am. Each problem is worth 10 points. If you use notes or formula sheets, make a reference. When using technology describe which commands (or keys typed) you used or print out your worksheet.
SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).

1. Find the area of the region bounded by $x=2-\sin (2 t), y=\cos (2 t),-\frac{\pi}{4} \leq t \leq \frac{\pi}{4}$, and the x-axis.

ALSe, $A=2 \int_{1}^{2} y d x=2 \int_{\frac{\pi}{4}}^{0} \cos (2 t)(-2) \cos (2 t) d t=\frac{1}{2} \pi$
2. A solid has a circular base of radius 2. Parallel cross-sections perpendicular to the base are isosceles triangles, which the equal sides above the base and as long as twice the height. Find the volume of the solid.

3. Find the volume of the solid obtained by rotating the region bounded by $y=\sqrt[5]{x}, y=\frac{1}{2 x+1}$, the x-axis, and $x=1$ about the line $x=1$.

$$
h_{1}=\sqrt[5]{x} ; h_{2}=\frac{1}{2 x+1}
$$

$$
\begin{aligned}
& Y_{1}=Y_{2}=1-x \\
& S_{1}=2 \pi(1-x) \sqrt[5]{x} \cdot \Delta x, \quad 0 \leq x \leq .2 \\
& S_{2}=2 \pi(1-x) /(2 x+1) \cdot \Delta x, \quad 2 \leq x \leq 1
\end{aligned}
$$

$$
V=\int_{0}^{.2} 2 \pi(1-x) \sqrt[5]{x} d x+\int_{.2}^{1} 2 \pi \frac{(1-x)}{2 x+1} d x \approx 1.754
$$

2^{*} pi" (Integrall($(1-x)$ nroot $\left.\left.\left.x, 5\right), 0,2|+\operatorname{lntegrall}(1-x)|(2 x+1), 2,1\right]\right)$

$$
\rightarrow \frac{3}{2} \pi \ln (3)-\frac{3}{2} \pi \ln \left(\frac{7}{5}\right)+\frac{1}{825} \pi(49 \sqrt[3]{625}-660)
$$

$3 / 2 \pi \ln (3)-3 / 2 \pi \ln (7 / 5)+1 / 825 \pi(49 \operatorname{nroot}(625,5)-660)$
$=1.7544$
4. Find the length of the curve $x=\sin ^{3} t, y=\cos ^{3} t, 0 \leq t \leq 2 \pi$.

$$
L=L_{1}+L_{2}+L_{3}+L_{4}=4 L_{1}
$$

BECAUSE OF SYMMETRY

$$
L=\int_{a}^{b} \sqrt[2]{\left(x^{2}\right)^{2}+\left(y^{2}\right)^{2}} d t
$$

$$
L_{1}=\int_{0}^{\frac{\pi}{2}} \sqrt[2]{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} d t=\int_{0}^{\frac{\pi}{2}} \frac{3}{2}|\sin (2 t)| d t=\frac{3}{2} \int_{0}^{\frac{\pi}{2}} \sin (2 t) d t
$$

$$
\left.\begin{array}{rl}
x^{\prime} & =3 \cos t \sin ^{2} t \\
y^{\prime}=3(-\sin t) \cos ^{2} t
\end{array}\right] \rightarrow\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=3^{2}(\cos t \sin t)^{2}\left(\sin ^{2} t+\cos ^{2} t\right)=1
$$

$$
\left.L_{1}=\frac{3}{2}\left[-\frac{1}{2} \cos (2 t)\right]_{0}^{\frac{\pi}{2}}=\frac{3}{4}(-1-1)+1\right)=\frac{3}{2} \Rightarrow L=4 L_{4}=6
$$

5. A spring stretches 1 foot beyond its natural position under a force of 150 pounds. How much work in foot-pounds is done in stretching it 4 feet beyond its natural position?

Hoke's Law

$$
\begin{aligned}
& W=\int_{0}^{4} F d x=\int_{0}^{4} 150 x d x=150\left[\frac{x^{2}}{2}\right]_{0}^{4}=1200 \quad F T-16
\end{aligned}
$$

6. An aquarium 1 foot high, 2 foot wide, and 3 feet long is filled with water. For simplicity, take the density of water to be $60 \mathrm{lb} / \mathrm{ft}^{3}$. Find the hydrostatic force in pound on one of the 1 foot by 3 feet sides of the aquarium.

$$
\left.\begin{array}{c}
d_{i}=x_{i} \\
x \quad A_{i}=3 \Delta x \\
\delta=60
\end{array}\right] \rightarrow F_{i}=\delta d_{i} A_{i}=180 x_{i} \cdot \Delta x
$$

$$
F=\int_{0}^{1} 180 x d x=180\left[\frac{x^{2}}{2}\right]_{0}^{1}=90 \| b
$$

7. Find c so that the following can serve as the probability density function of a random variable X :

$$
\begin{aligned}
& f(X)= \begin{cases}c X^{2} e^{-5 X^{3}} & \text { if } X \geq 0 \\
0 & \text { otherwise }\end{cases} \\
& 1=\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{\infty} c x^{2} e^{-5 x^{3}} d x=\lim _{p \rightarrow-\infty} c \int_{0}^{b} x^{2} e^{u} \frac{1}{-15 x^{2}} d u \Rightarrow \\
& u=-5 x^{3} \Rightarrow d u=-15 x^{2} d x \\
& x=0 \Rightarrow u=0 ; x \rightarrow \infty \Rightarrow u \rightarrow-\infty \\
& \Rightarrow 1=\frac{c}{15} \cdot \lim _{b \rightarrow-\infty} \int_{b}^{a} e^{u} d u=\frac{c}{15} \lim _{b \rightarrow-\infty}\left[e^{u}\right]_{b}^{b}=\frac{c}{15}\left(1-\lim _{b \rightarrow-\infty} e^{b}\right) \\
& \Rightarrow 1=\frac{c}{15} \cdot(1-0) \Rightarrow \frac{c}{15}=1 \Rightarrow c=15
\end{aligned}
$$

8. A culture of bacteria is doubling every 3 hours. What is the average population over the first four hours if we assume that the culture initially contained four million organisms?

$$
\begin{aligned}
& P=P_{0} e^{k t} \Rightarrow 2 P_{0}=P_{0} e^{k(3)} \Rightarrow \ln 2=3 k \Rightarrow k=\frac{\ln 2}{3} \Rightarrow \\
& P=P_{0} e^{\operatorname{he} 2 \cdot \frac{t}{3}}=P_{0} 2^{\frac{t}{3}} \text {. IF } P_{\text {in MाルеN, }} P_{0}=4=2^{2} \Rightarrow P=2^{\frac{t}{3}+2} \\
& \text { AVSRAGS DURING FIRST } 4 \text { HOURS }=\frac{1}{4-0} \int_{0}^{4} P d t=\frac{1}{4} \int_{0}^{4} 2^{\frac{t}{3}+2} d t \\
& .25^{*} \text { Integral }\left[2^{\wedge}(x / 3+2), 0,4\right] \\
& \rightarrow \frac{\sqrt[3]{2} \cdot 6-3}{\ln (2)} \\
& \text { (cbrt(2) 6-3)//n(2) } \\
& \text { QR ABeT } G, 578,006 \text { ORGANISMS } \\
& \approx 6.578 .005 .9809
\end{aligned}
$$

9. A tank 6 feet long has cross-sections in the shape of a semicircle with radius 2 feet long. Suppose that the tank is filled to a depth of 4 feet with liquid weighing $18 \mathrm{lb} / \mathrm{ft}^{3}$. How much work is required to empty the tank by pumping the liquid over the edge of the tank?

10. The demand function for producing a certain commodity is given by $p=750-0.2 x-0.0003 x^{2}$. Find the consumer surplus when the sale level is 1000 .

$$
\begin{aligned}
C S & =\int_{0}^{x_{0}} p(x)-p\left(x_{0}\right) d x \\
& =\int_{0}^{1000} 500-.2 x-.0003 x^{2} d x \\
& =\left[500 x-.1 x^{2}-.0001 x^{3}\right]_{0}^{1000} \\
\left(x_{0}\right) & =300,000(\text { DOLLARS? })
\end{aligned}
$$

