MAT 320 - Spring 2019 - Exam 2
Instructor: Dr. Francesco Strazzullo
Name \qquad
I certify that I did not receive third party help in completing this test (sign) \qquad
Instructions. Technology is allowed on this exam. Each problem is worth 10 points. If you use formulas or properties from our book, make a reference. When using technology describe which commands (or keys typed) you used or print out and attach your worksheet.
SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).

1) Let $A=\left[\begin{array}{ll}4 & 5 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}6 & 3 \\ 0 & 1\end{array}\right]$. Find $3 A-2 B$. $=$

$$
=\left[\begin{array}{cc}
12 & 15 \\
3 & 0
\end{array}\right]-\left[\begin{array}{cc}
11 & 6 \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
12-12 & 15-6 \\
3-\infty & 0-2
\end{array}\right]=\left[\begin{array}{cc}
0 & 9 \\
3 & -2
\end{array}\right]
$$

2) Find the transpose of $M=\left[\begin{array}{ccr}3 & 1 & 0 \\ -1 & 4 & 6 \\ 2 & 0 & -2 \\ 1 & 4 & 1\end{array}\right]$.

$$
M^{\top}=\left[\begin{array}{cccc}
3 & -1 & 2 & 1 \\
1 & 4 & 0 & 4 \\
0 & 6 & -2 & 1
\end{array}\right]
$$

3) You can use technology only to check your results and compute arithmetic operations. Find the determinant of

$$
\begin{aligned}
A & =\left[\begin{array}{cccc}
8 & 0 & 5 & -5 \\
0 & 3 & 0 & 0 \\
-10 & 2 & -7 & 8 \\
0 & 2 & 0 & 1
\end{array}\right] . \underset{\substack{\text { ROW } \\
\text { RON }}}{B y}|A|=(-1)^{2+2}(3)\left|\begin{array}{ccc}
8 & 5 & -5 \\
-10 & -7 & 8 \\
0 & 0 & 1
\end{array}\right|=\underbrace{\text { By }}_{\text {RoN }} \text { BN } \\
& =3(1)\left|\begin{array}{cc}
8 & 5 \\
-10 & -7
\end{array}\right|=3(-56+50)=-18
\end{aligned}
$$

4) Evaluate the determinant of $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 1 & -3 & 1 \\ 2 & 0 & 1\end{array}\right]$ in two different ways: a) by expanding along the second row, then b) by expanding along the third column.

$$
\text { (a). } \begin{aligned}
|A| & =(-1)^{2+1}(1)\left|\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right|+(-1)^{2+2}(-3)\left|\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right|+(-1)^{2+3}(1)\left|\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right| \\
& =-(2-0)-3(1-0)-(0-4)^{2}=-2-3+4=-1 \\
\text { (b) }|A| & =0+(-1)^{t+3}(1)\left|\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right|+(-1)^{3+3}(1)\left|\begin{array}{ll}
1 & 2 \\
1 & -3
\end{array}\right| \\
& =-(0-4)+(-3-2)=4-5=-1
\end{aligned}
$$

5) Let $A=\left[\begin{array}{rrrr}0 & 1 & -1 & 1 \\ 1 & -1 & 2 & 3 \\ 2 & 1 & -1 & 1 \\ 1 & 0 & 3 & 4 \\ 0 & -1 & 0 & 0\end{array}\right]$. Determine a basis for $\operatorname{Col}(A)$, the column space of A.

$$
\begin{aligned}
& \operatorname{col}(A)=\operatorname{sPAN}\left(\left\{A_{1}, \ldots A_{n}\right\}\right)=\operatorname{SPRN}\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \\
& \operatorname{RREF} A=\left[\begin{array}{c}
I_{4} \\
\vec{D}^{+}
\end{array}\right] \Rightarrow \operatorname{Vank}=4 \operatorname{ALL} \| D E P_{1} .
\end{aligned}
$$

6) Let $B=\left[\begin{array}{rrr}2 & -1 & 1 \\ 1 & 2 & 4 \\ 1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$. Determine a basis for $\operatorname{Row}(B)$, the row space of B.

$$
\begin{aligned}
& \Rightarrow \operatorname{son}(0)=\operatorname{sen}\left\{[0] \left[[0]\left[\begin{array}{ll}
{[0]}
\end{array}\right]=R^{3}\right.\right.
\end{aligned}
$$

7) Let $A=\left[\begin{array}{rrrrr}3 & 2 & 0 & 1 & 2 \\ 0 & 1 & -1 & -1 & 0 \\ 1 & 0 & 2 & 1 & -1\end{array}\right]$.
(a) Determine a basis for $\operatorname{Col}(A)$.

$$
\begin{aligned}
& \text { (b) Determine a basis for } \operatorname{Null}(A) \text {. } \\
& \begin{array}{l}
\operatorname{RREF}(A)=\left[\begin{array}{ccc}
I_{3} & -1 & -5 / 4 \\
0 & -5 / 4
\end{array}\right] \Rightarrow \operatorname{Col}(A)=\operatorname{SPAN}\left(E_{3}\right)=R^{3} \\
(b) \operatorname{NULL}(A)=\left\{\vec{X}^{3} R^{5} \mid A X^{-0}=\overrightarrow{0}^{-0}\right\}=\operatorname{SPAN}\left(\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1 \\
0
\end{array}\right] 0\left[\begin{array}{c}
-3 / 2 \\
5 / 4 \\
5 / 4 \\
0 \\
1
\end{array}\right]\right)
\end{array} \\
& D X^{0}=X_{4}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1 \\
0
\end{array}\right]+X_{5}\left[\begin{array}{c}
-3 / 2 \\
5 / 4 \\
5 / 4 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

8) You can use technology only to check your results and compute arithmetic operations. Use Row Reduction to verify that $A=\left[\begin{array}{rrr}2 & 1 & 1 \\ 0 & -1 & 0 \\ 1 & 1 & 1\end{array}\right]$ is invertible and use A^{-1} to solve the system $A x=\left[\begin{array}{r}1 \\ -3 \\ 2\end{array}\right]$.

$$
\left[A \mid I_{3}\right] \stackrel{R_{3}-\frac{1}{2} R_{1}}{=}\left[\begin{array}{ccc|ccc}
2 & 1 & 1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 1 / 2 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & -17 \\
-\frac{1}{2} R_{2} R_{1} \\
R_{3}+\frac{1}{2} R_{2}
\end{array}\left[\begin{array}{ccc|ccc}
1 & 1 / 2 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 1 & 0 & R_{1}-\frac{1}{2} R_{2}-R_{3} \\
0 & 0 & 1 / 2 & -1 / 2 & 0 & 0 \\
2 R_{3}
\end{array}\right]\right.
$$

Solution $\vec{x}=A^{-1} \vec{b}=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 1 & 2\end{array}\right]\left[\begin{array}{c}1 \\ -3 \\ 2\end{array}\right]=\left[\begin{array}{c}-1 \\ 3 \\ 0\end{array}\right]$
Chen: $A \vec{x}=\left[\begin{array}{cc}-2+3+0 \\ 0 & -3+0 \\ -1+3+0\end{array}\right]=\left[\begin{array}{c}1 \\ -3 \\ 2\end{array}\right]$
9) After checking the conditions for doing it, solve the following system using Cramer's rule.

$$
\left\{\begin{array}{l}
3 x-2 y+z=1 \\
2 x-y-z=-1 \\
x-y+3 z=3
\end{array} \quad D \quad|A| \neq 0 \quad \text { TheN } \vec{x}=\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]\right. \text { is GuyED }
$$

Han OR: $X+Y-W=2$

$$
B^{1}=\left[\begin{array}{ccc}
1 & -2 & 1 \\
-1 & -1 & -1 \\
3 & -1 & 3
\end{array}\right] \Rightarrow\left|B^{1}\right|=0 \Rightarrow x_{1}=0
$$

$$
B^{2}=\left[\begin{array}{ccc}
3 & 1 & 1 \\
2 & -1 & -1 \\
1 & 3 & 3
\end{array}\right] \Rightarrow\left|B^{2}\right|=0 \Rightarrow x_{2}=0
$$

$$
B^{3}=\left[\begin{array}{ccc}
3 & -2 & 1 \\
2 & -1 & -1 \\
1 & -1 & 3
\end{array}\right] \Rightarrow\left|B^{3}\right|=1 \Rightarrow X_{3}=1
$$

Solution: $\vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
CHEN: $A \vec{x}=\left[\begin{array}{r}1 \\ -1 \\ 3\end{array}\right]$
Harbor solution: $\vec{x}=\left[\begin{array}{r}0 \\ 0 \\ 1 \\ -2\end{array}\right]$;
CHeCK: $A_{H} \vec{X}=\left[\begin{array}{c}1 \\ -1 \\ 3 \\ -1(-2)\end{array}\right]$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3 & -2 & 1 \\
2 & -1 & -1 \\
1 & -1 & 3
\end{array}\right] \Rightarrow \begin{array}{|c|}
\mid A C H
\end{array} \\
& \text { Honor } A_{\text {H }}=\left[\begin{array}{cccc}
3 & -2 & 1 & 0 \\
2 & -1 & -1 & 0 \\
1 & -1 & 0 & 0 \\
1 & 1 & 0 & -1
\end{array}\right]=\left|\begin{array}{c:c}
A & 0 \\
\hdashline 1 & 0
\end{array}\right|=-1 \cdot|A|=-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { HoNor } \\
& \begin{aligned}
B_{H}^{1}=\left[\begin{array}{c:c}
B^{1} & 0 \\
0 \\
\hdashline 2 & 0 \\
-1 & -1
\end{array}\right] \Rightarrow\left|B_{H}^{1}\right| & =-1\left|B^{\prime}\right| \\
& =0
\end{aligned} \\
& \Rightarrow \quad x_{1}=0 \\
& \begin{aligned}
B_{H}^{2}=\left[\begin{array}{c:c}
B_{1}^{2}: \theta \\
\hdashline 120 & \theta
\end{array}\right] \Rightarrow\left|B_{H}^{2}\right| & =-1 \cdot\left|B^{2}\right|=0 \\
\Rightarrow x_{2} & =0
\end{aligned} \\
& \begin{aligned}
B_{H}^{3}=\left[\begin{array}{r}
\left.B^{3 \mid} \left\lvert\, \begin{array}{r}
0 \\
21 \\
-1 \\
2
\end{array}\right.\right]-1
\end{array}\right] & \Rightarrow\left|B_{n}^{3}\right|=-1 \cdot\left|B^{3}\right|=-1 \\
& \Rightarrow X_{3}=\frac{-1}{-1}=1
\end{aligned} \\
& \begin{aligned}
B_{H}^{4}=\left[\begin{array}{cc}
A & 1 \\
A & -1 \\
110 & \frac{3}{2}
\end{array}\right]
\end{aligned} \Rightarrow\left|B_{14}^{4}\right|=2|A|=2
\end{aligned}
$$

