Math 310 - Spring 2016 - Test 2 - Take Home

Instructor: Dr. Francesco Strazzullo

My Name_____

I certify that I did not receive third party help in completing this test. (sign)_____

Instructions. SHOW YOUR WORK neatly, please. Each exercise is worth 10 points. If using a result from the book, make a reference to it.

1. Let $H \leq G$, $x \in G$, and $y \in G$. Prove that the relation defined in G by

$$x \mathcal{L}_H y \Leftrightarrow y^{-1} x \in H,$$

is an equivalence.

QNÉ CAN PROVE THAT " $X L_H Y d D X H = Y H'' BY USING 63,$ THEN USE 6 4 AND 1.25 TO PROVE THAT L_H IS AN EQUIVALANCE. DIRECTLY, PROVE THAT L_H IS REFLEXIVE, SYMMETRIC, AND TRANSITIVE. REFL PROVE XEE = $X L_H X$ $\forall X \in F, X^{-1} X = e \in H (BEGAUSE H \leq f) = X L_H X$ $X L_H Y = y Y L_H X$ $X L_H Y = y Y L_H X$ $X L_H Y = y Y X e H H = F H = (y' X)^{-1} = x^{-1} (y')^{-1} = x^{-1} y = y' L_H X'$ TRANS PROVE $X L_H Y = AND Y L_H Z = D X L_H Z$ $X L_H Y = y^{-1} X e H H = F H = (z' Y) (y' X) = z' (yy') X = z' X$ $Y L_H Z = D Z' Y e H = H = F H = (z' X) (y' X) = z' (yy') X = z' X$ $Y L_H Z = D Z' Y e H = F H = F H = (z' X) (y' X) = z' (yy') X = z' X$

- 2. Find, if possible, an element in S_5 with the indicated order. Justify your answer or choice with explicit computations or arguments based on results from our book.
 - (a) Order 6.
 - (b) Order 13.

$$((n) = (12)(345) + H_{45} \text{ or } SER = 6, BEGAUSE$$

$$(12)^{2} = (1), (345)^{2} = (354), (345)^{3} = (1),$$

$$THEN = |G'| = MUST = DE DIVISIBLE = DY = Batti = 2 Arrow = 3, AND$$

$$G'^{6} = (12)^{6} (345)^{6} = ((12)^{2})^{3} ((345)^{3})^{2} = (1)$$

3. Let G be a (multiplicative) group and $x, y \in G$. Define the commutator of x and y to be the element $[x,y] = xyx^{-1}y^{-1}$, then define the first derived subgroup of G to be $G' = \langle [x,y] \in G \mid x,y \in G \rangle$ (the set of finite products of elements [x,y]). Prove that $G' \leq G$ (that is G' is a subgroup of G).

$$\begin{split} & \text{INDEFD}, \quad e = \text{Ee}_{i} e \text{J} e \text{J}', \quad \text{THEW} \quad \mathcal{C} \neq \emptyset \text{ AND } e e \text{C}' \\ & \text{Dy construction} \quad \mathcal{C}' \text{ is } \text{LLOSED UNDER PRODUCT, } \text{THEREFORE UNE} \\ & \text{OWLY NEED TO PROVE THAT EACH ELEMENT HAS INVERSE IN C':} \\ & \text{e}_{i} e \text{C}_{i} \text{AD} = \text{E}_{i,1} \text{N}_{i}^{-1} \cdots \text{E}_{N_{i}} \text{N}_{i}^{-1} \\ & \text{PROVE THAT} \quad \overline{w}^{-1} = [X_{i}, x_{i}_{i}] \cdots [Y_{i}, x_{i}] \in \text{C}' \text{ formand} \\ & \text{THAT} \quad \overline{w}^{-1} = [X_{i}, y_{i}] = \text{D} \quad \overline{w}^{-1} = (XYX^{-1}Y^{-1})^{-1} = \\ & = (Y^{-1})^{-1} (X^{-1})^{-1} Y^{-1} x^{-1} = YXY^{-1} x^{-1} = [Y_{i}X_{i}] \in \text{C}' \\ & \text{ISTEP} \quad \text{Assume} \left([X_{i}, Y_{i}] \dots [X_{i}, y_{i}] \right)^{-1} = [X_{i}, x_{i}] \dots [Y_{i}, x_{i}] \\ & (X_{i}, Y_{i}] \dots [X_{i}, y_{i}] \right)^{-1} = [X_{i}, x_{i}] \dots [Y_{i}, x_{i}] \\ & ([X_{i}, Y_{i}] \dots [X_{i}] (X_{i+1}, Y_{i+1}])^{-1} = \\ & = \left[(Y_{i+1}) (Y_{i+1}) (Y_{i}) (Y_{i}) (Y_{i+1}) ($$

BE COMMUTATORS |

١٦

4. Let $H = \langle (1324) \rangle$ be a cyclic subgroup of S_4 . Compute the quotient set $\frac{S_4}{\mathcal{R}_H}$, that is the partition of S_4 generated by the right-cosets of H.

5. List the left and right cosets of $\langle \bar{9} \rangle$ in $\mathbb{Z}_{10}^* = U(10)$.

$$Z_{10}^{*} = V(10) = \left\{ \overline{J}, \overline{3}, \overline{7}, \overline{9} \right\}$$

$$H = \left\{ \overline{9} \right\} = \left\{ \overline{9}^{H} \right\} + \left\{ H = \overline{9} \right\}$$

$$\overline{9}^{2} = \left\{ \overline{81} = \overline{1} \right\} = \left\{ \overline{9} \right\} = \left\{ \overline{3}, \overline{7} \right\} = \overline{7} \right\}$$

$$Z_{10}^{*} = \left\{ \overline{9} \right\} = \left\{ \overline{9}$$

Only for Math 310-02H

6. Find the subgroup of
$$GL_2(\mathbb{R})$$
 generated by $\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$
 $\begin{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \end{pmatrix} \ge = \begin{cases} \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}^n \in \mathcal{H}_2(\mathbb{R}) \mid n \in \mathbb{Z} \end{cases}$
We can vise a machine to to compute these powers
 $\stackrel{A=\{\{1,-1\},\{1,0\}\}}{\xrightarrow{A=2}} \xrightarrow{A=4} \xrightarrow{A=4} \xrightarrow{-1} \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} \xrightarrow{A=5} \xrightarrow{A=6} \xrightarrow{$

```
Instructor: Dr. Francesco Strazzullo
```

My Name____

Instructions. SHOW YOUR WORK neatly, please. Each exercise is worth 10 points. If using a result from the book, make a reference to it.

1. List the elements of S_4 and of its cyclic subgroup $\langle (134) \rangle$, then compute all the left cosets of $\langle (134) \rangle$ in S_4 .

$$\begin{array}{l} L_{1} V_{n} \mathcal{E} = \{134\} (134) = (14, 3) \Rightarrow (134)^{2} = \{143\} (134) = (1) \Rightarrow \\ (134)^{2} = (134) (134) = \{14, 3\} \Rightarrow (134)^{2} = \{143\} (134) = (1) \Rightarrow \\ \Rightarrow H = \langle (134) \rangle = \{11\} (11, 134) (113) (114)^{2} \}, Py \ LAFRANGES, \ IS_{4} : H| = \frac{C_{3}}{3} = 8 \\ TMEN \ S_{4} \mathcal{L}_{H} \end{array}$$

First let's list the 24 elements of Si: $(TMEN \ APPLY \ C.3 \ for \ R16HT \ Los \ ST3})$

(1).(12).(13).(11).(23).(24).(142).(143) (234).(243) these fix more than one element, (1234).(1243).(1324).(1432).(1432).(1423) (1423) (1432) (

2. Consider the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 2 & 6 & 4 & 5 & 7 & 9 & 8 \end{pmatrix},$$

- (a) Write a disjoint-cycles-decomposition of $\sigma.$
- (b) Compute the order of σ .

(e)
$$\mathcal{C} = (|32)(4cs)(89)$$

(b) $|(|32)| = |(4cs)| = 3$ And $|(89)| = 2 \Rightarrow$
 $= \mathbb{P} = 2$ And 3 divides $|\mathcal{C}|$
 $\mathcal{C} = (|32)^{\mathcal{C}}(4cs)^{\mathcal{C}}(89)^{\mathcal{C}} = ((|32)^{3})^{2}((4cs)^{3})^{2}((89)^{2})^{3} = (1)$
 $THEN |\mathcal{C}| = 6$