I certify that I did not receive third party help in completing this test (sign)
Instructions. Technology and instructor's notes (including the formula sheets from our book) are allowed on this exam. Each problem is worth 10 points. If you use notes or formula sheets, make a reference. When using technology describe which commands (or keys typed) you used or print out your worksheet.
SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).

1. Consider the recursive sequence defined by

$$
x_{1}=3 ; \quad x_{n+1}=2-\frac{1}{x_{n}}, \quad n>1
$$

a) Evaluate the first three terms of this sequence.
b) You can assume the sequence to be monotonic and bounded (and hence convergent). Indicate if it is increasing or decreasing, finding a bounding interval.
c) Find the limit of this sequence.

$$
\text { a) } \begin{aligned}
x_{1} & =3 ; x_{2}=2-\frac{1}{3}=\frac{5}{3} ; x_{3}=2-\frac{3}{5}=\frac{7}{5} ;\left(x_{4}=2-\frac{3}{4}=\frac{11}{7} ;\right. \\
x_{5} & \left.=2-\frac{7}{11}=\frac{16}{11} ; \cdots\right)
\end{aligned}
$$

b) Seravene is dichitasida with $a \leqslant x_{n} \leqslant 3$
e) If L is tho limit, Third $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=L$
and The recorsiod formula bees $L=2-\frac{1}{L}$. Frond
L is A solution of $x=2-\frac{1}{x}$ with $0 \leq L \leq 3$.

$$
\begin{aligned}
& x=2-\frac{1}{x} \Rightarrow x^{2}=2 x-1 \Rightarrow x^{2}-2 x+1=0 \Rightarrow 0 \\
& \Rightarrow(x-1)^{2}=0 \Rightarrow x=1 \Rightarrow L=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. Prove divergent or find the sum of the series } \\
& \sum_{n=4}^{\infty} \frac{3}{n(n-3)}=3 \sum_{n=4}^{\infty} \frac{1}{n(n-3)}=3 \sum_{i=4}^{\infty} \frac{-1 / 3}{i}+\frac{1 / 3}{i-3}=\sum_{i=4}^{\infty} \frac{1}{i-3}-\frac{1}{i} \\
& \begin{aligned}
s_{n} & =\sum_{i=4}^{n} \frac{1}{i-3}-\frac{1}{i}=\frac{1}{1}-\frac{1}{4}+\frac{1}{2}-\frac{1}{5}+\frac{1}{3}-\frac{1}{6}+\frac{1}{4}-\frac{1}{7}+\frac{1}{5}-\frac{1}{8}+\ldots \\
& +\frac{1}{n-6}-\frac{1}{x-3}+\frac{1}{x-5}-\frac{1}{n-2}+\frac{1}{n-4}-\frac{1}{n-1}+\frac{1}{n-3}-\frac{1}{n}= \\
& =1+\frac{1}{2}+\frac{1}{3}-\frac{1}{n-2}-\frac{1}{n-1}-\frac{1}{n} \xrightarrow[n \rightarrow \infty]{n} \frac{11}{6}+0=\frac{11}{6} \Rightarrow \\
\Rightarrow D & \sum_{n=4}^{\infty} \frac{3}{n(n-3)}=\lim _{n \rightarrow \infty} s_{n}=\frac{11}{6}
\end{aligned} .
\end{aligned}
$$

3. Prove divergent or find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{n(n+4)}
$$

A LR
RATO TEST $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2^{n+1}}{(n+1)(n+5)} \cdot \frac{n(n+4)}{2^{n}}=2 \frac{n(n+4)}{(n+1)(n+5)} \rightarrow 2$ Pay comines of Deb in 2 at mun. AnD Denom.

$$
2>1=0 \text { bIVERbont }
$$

$$
\begin{aligned}
& 2>1=D \text { biverbor T } \\
& \text { DIV. TEST: } f(x)=\frac{2^{x}}{x(x+4)} \frac{H R}{x \rightarrow \infty} \frac{2^{x}}{2 x+4} \xrightarrow[x \rightarrow \infty]{H R} \frac{2^{x}}{2}=2^{x-1} \underset{x \rightarrow \infty}{\rightarrow \infty} \infty
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=1}^{4 . \text { Find the radius of convergence of }} \frac{(x-2)^{n}}{\text { RATIO TEST: }}\left|\frac{a_{n+1}}{a_{n n}}\right|=\left|\frac{(x-2)^{n+1}}{(n+1)!3^{n}} \cdot \frac{n!3^{n-1}}{(x-2)^{n}}\right|= \\
& =\left|\frac{(x-2)}{3(n+1)}\right| \underset{n \rightarrow \infty}{\Rightarrow} 0 \Rightarrow \text { ALLWAYS convenb-ET =- } \\
& \Rightarrow R=\infty
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5. Find the radius of convergence of } \\
& \sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n!} \\
& \left|\frac{Q_{n+1}}{Q_{n}}\right|=\left|\frac{(x-3)^{n+1}}{(n+1)!} \frac{n}{(x-3)^{n}}\right|=\left|\frac{(x-3)}{n+1}\right| \xrightarrow[n \rightarrow \infty]{0} 0 \\
& R=\infty .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6. Find the interval of convergence of } \\
& \sum_{n=1}^{\infty} \frac{(2 x-5)^{n}}{3 n^{3}} \quad\left|\cdot \frac{1}{n+1} \cdot \frac{1}{a_{n}}\right|=\left|\frac{(2 x-5)^{n+1}}{3(n+1)^{3}} \cdot \frac{3 n^{3}}{(2 x-5)^{n}}\right|= \\
& =|2 x-5| \cdot\left(\frac{n}{n+1}\right)^{3} \xrightarrow[n \rightarrow \infty]{\longrightarrow}|2 x-5| \cdot 1^{3}<1 \Rightarrow|2 x-5|<1 \Rightarrow 7 \\
& \Rightarrow-1<2 x-5<1 \Rightarrow 2<x<3 .
\end{aligned}
$$

CHECN EADPONTS: $x=2 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n}}{3 n^{3}}$ aETERNAINDE WITM $b_{n}=\frac{1}{3 n^{3}} \rightarrow 0$ ano DeCrsasine- - D senles canverbent.

$$
\text { - } x=3 \Rightarrow \sum_{\eta=1}^{\infty} \frac{1}{3 n^{3}} v i t \left\lvert\, r \int_{1}^{\infty} \frac{1}{3 x^{3}} d x=\frac{1}{3} \lim _{t \rightarrow \infty} \int_{1}^{t} x^{-3} d x=\frac{1}{3}\left[\frac{x^{-2}}{-2}\right]_{1}^{\infty}=-\frac{1}{8}(0-1) \cdot \Rightarrow\right.
$$

\Rightarrow coorv. By INTECN, TEST.

$$
\operatorname{lnT} \cdot \operatorname{of} \operatorname{con} v=[2,3]
$$

7. Find the coefficient of x^{3} in the Maclaurin series for $f(x)=x^{4}-\sin (2 x)$.

$$
\begin{aligned}
& f^{(1)}(x)=4 x^{3}-2 \cos (2 x) \Rightarrow f^{(2)}(x)=12 x^{2}+4 \sin (2 x) \\
& M_{f}=\sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^{i} \Rightarrow \operatorname{cosFF} O F x^{3}=\frac{f^{(3)}(0)}{3!} \\
& \Rightarrow f^{(3)}(x)=24 x+8 \cos (2 x) \text { wirl } \frac{f^{(3)}(0)}{3!}=\frac{8}{6}=\frac{4}{3} .
\end{aligned}
$$

\qquad

Instructions. Technology and instructor's notes (including the formula sheets from our book) are allowed on this exam. Each problem is worth 10 points. If you use notes or formula sheets, make a reference. When using technology describe which commands (or keys typed) you used or print out your worksheet.
SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).
8. Find the radius and the interval of convergence of

$$
\ln \pi \cdot \operatorname{con} N=(-2,-2 / 3)
$$

$$
\begin{aligned}
& \text { 9. Prove divergent of find the sum of the series } \\
& \sum_{n=5}^{\infty} \frac{2}{n^{2}-16}=2 \sum_{n=9}^{\infty} \frac{1}{(n-4)(n+4)}=2 \sum_{i=5}^{\infty} \frac{1 / 8}{i-4}-\frac{1 / 8}{i+4}=\frac{1}{4} \sum_{n=5}^{\infty} \frac{1}{i-4}-\frac{1}{i+4} \\
& 4 S_{n}=\sum_{i=5}^{n} \frac{1}{i-4}-\frac{1}{i+4}=1-\frac{1}{9}+\frac{1}{2}-\frac{1}{10}+\frac{1}{3}-\frac{1}{11}+\frac{1}{4}-\frac{1}{12}+\ldots+\frac{1}{9}-\frac{1}{17}+ \\
& +\frac{1}{10}-\frac{1}{18}+\cdots+\frac{1}{n-9}-\frac{1}{n-1}+\frac{1}{n-8}-\frac{1}{n}+\frac{1}{n-7}-\frac{1}{n-1}+\frac{1}{n-6}-\frac{1}{n+8} \\
& +\frac{1}{n-5}-\frac{1}{n+3}+\frac{1}{n-4}-\frac{1}{n+4} \\
& \quad=\frac{761}{n \rightarrow \infty} \Rightarrow+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+0= \\
& \quad \sum_{n=5}^{\infty} \frac{2}{n^{2}-16}=\frac{1}{4} \frac{761}{280}=\frac{761}{1120}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(3 x+4)^{n}}{2^{n+1}} \quad\left|a_{n+1} \cdot \frac{1}{a_{n}}\right|=\left|\frac{(3 x+4)^{n+1}}{2^{n+2}} \cdot \frac{2^{n+1}}{(3 x+4)^{n}}\right|=\left|\frac{1}{2}(3 x+4)\right|<1 \Rightarrow \\
& \Rightarrow<2<3 x+4<2 \Rightarrow-2<x<-2 / 3 \Rightarrow R=\frac{1}{2}\left(-\frac{2}{3}+2\right)=\frac{2}{3} \\
& \text { EnDP9/nTs: } 0 x=-2 \Rightarrow \sum_{n=0}^{\infty} \frac{(-2)^{n}}{2^{n+1}}=\sum_{n=0}^{\infty} \frac{1}{2}(-1)^{n} \text { DIVEnQOANT BY DIV. TEST. } \\
& \text { - } x=\frac{2}{3} \Rightarrow \sum_{n=0}^{\infty} \frac{6^{n}}{2^{n+1}}=\sum_{n=0}^{\infty} \frac{1}{2} 3^{n} \text { Diveredent by div. TEST. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { powers of binomials, do not expand. (HONOR: write the at -degree one) } \\
& f^{\prime}(x)=3 x^{2}+2 \sin (\pi x) \Rightarrow f^{\prime}(1)=3 \\
& f^{\prime \prime}(x)=6 x+2 \pi \cos (\pi x) \Rightarrow f^{\prime \prime}(1)=6-2 \pi \\
& f^{(3)}(x)=6-2 \pi^{2} \sin (\pi x) \Rightarrow f^{(3)}(1)=6 \\
& T_{f, c}^{n}=\sum_{i=0}^{n} \frac{f^{(i)}(c)}{i!}(x-c)^{i} \\
& T_{f 11}^{3}=\sum_{i=0}^{3} \frac{f^{(i)}(1)}{i!}(x-1)^{i}=1+\frac{2}{\pi}+3(x-1)+(3-\pi)(x-1)^{2}+(x-1)^{3} \\
& H \operatorname{Hown} n+\frac{\pi^{3}}{12}(x-1)^{4} \\
& f^{(u)}(x)=-2 \pi^{3} \cos (\pi x) \Rightarrow f^{(4)}(1)=2 \pi^{3}
\end{aligned}
$$

