Student \qquad
I certify that I did not receive third party help in completing this test (sign)
Instructions. This is an open book test. Each exercise is worth 10 points. Do not approximate, unless otherwise indicated. When approximating, use four decimal places. You cannot use a CAS to justify your answers, but only to perform computations. Use the appropriate units of measure in your answer, when applicable.
SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).

1. Consider the factored polynomial

$$
f(x)=(x+1)^{3}(x-2)^{2}(x+4)
$$

Step 1. Determine the degree and y-intercept (write the y-intercept as an ordered pair).
Step 2. Determine the x-intercepts) at which f crosses the axis. If there are none, state "none".
Step 3. Determine the zeros) of f at which it "flattens out". If there are none, state "none".
Step 4. Determine the turning points of f (specifying if maximum or minimum, and approximate if needed).

$$
\begin{aligned}
& \text { 1) DEG }=3+2+1=6 \text {; 2) MULTIPLCITY is ODD: }(-1,0),(-4,0) \\
& \text { Y-WTERLOAT }=\left(0, f(0)=1^{3}(-2)^{2} \cdot 4=16\right)
\end{aligned}
$$

3) MuLTPLICLTY $\geqslant 2 \Rightarrow x=-1, x=2$

$$
\begin{aligned}
\text { Rélainé: } & (-3.386,-241.9426) \\
& (2,0) \\
\text { MéLATNÉ } & \\
\text { MAXIMUM: } & (.886,40.677)
\end{aligned}
$$

2. Jacob invests $\$ 8,000$ in an account that compounds weekly with 3.75% annual interest rate. How long would it take Jacob to earn $\$ 350$ in interest? Solve graphically, sketching your graph and rounding to one decimal place.

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t}, I=A-P ; P=8000, Y=\frac{3.85}{100}, w_{E G K L Y} n=52 \\
& A=8000\left(1+\frac{.0377}{52}\right)^{52 t} \\
& I=350 \Rightarrow A=P+I=8350 \\
& t=1.1 \\
& (\text { NoTE: } A(1.1)<8350 \Rightarrow t=1.2)
\end{aligned}
$$

3. Use polynomial long division to rewrite the following rational function in the form $f(x)=q(x)+\frac{r(x)}{d(x)}$, where $d(x)$ is the denominator of the original fraction, $q(x)$ is the quotient, and $r(x)$ is the remainder. Then write the equations of any asymptote.

$$
\begin{array}{ll}
f(x)=\frac{2 x^{4}-9 x^{2}+4}{x^{2}-4}=2 x^{2}-1 & \text { Then } f(x) \text { Has NoNE V.A. (HoLES AT } x= \pm 2 \text {) } \\
x^{2}-4 \left\lvert\, \begin{array}{ll}
\frac{2 x^{2}-1}{2 x^{4}-9 x^{2}+4} \\
\frac{2 x^{4}-8 x^{2}}{-x^{2}+4} \\
\frac{-x^{2}+4}{0}
\end{array}\right. & y=2 x^{2}-1 \text { is The NON-VERTCAL ASYMP. }
\end{array}
$$

Instructor: Dr. Francesco Strazzullo
Name \qquad
Instructions. Complete the following exercises. Each exercise is worth 10 points. If you need to approximate then round to 3 decimal places, unless otherwise specified. This is an open book test: only a textbook can be used, or a cheat-sheet approved by your instructor. Personal notebooks cannot be used. You can also use a graphing tool and/or a computer algebra system like GeoGebra. When solving a problem graphically sketch the graph you used.
SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).
4. Solve the rational inequality. Write your answer in interval notation (use two decimal places if needed).

$$
\begin{aligned}
& 3 x-2 \geq \frac{2}{x-4} \\
& \frac{(3 x-2)(x-4)-2}{x-4} \geq 0 \\
& \frac{3 x^{2}-14 x+0}{x-4} \geq 0
\end{aligned}
$$

REST, VALUES: $x-4=0 \Rightarrow x=4$
Lenolsi $3 x^{2}-14 x-10=0 \Rightarrow$
$\Rightarrow x=\frac{14 \pm \sqrt{124}}{2(3)}=\frac{7 \pm \sqrt{31}}{3} \sim .48$
HONOR SECTION $\frac{3 x-2}{x-1} \geq \frac{2 x+1}{x-4}$
$\frac{(3 x-2)(x-4)-(2 x+1)(x-1)}{(x-1)(x-4)} \geq 0$
$\frac{3 x^{2}-14 x+8-2 x^{2}+x+1}{(x-1)(x-4)} \geq 0$ $\frac{x^{2}-13 x+9}{(x-1)(x-4)} \geq 0 \quad$ REsin ZERO' $: \quad x=\frac{13 \pm \sqrt{133}}{2} \sim .73$

SOLUTION $=\left[\frac{7-\sqrt{3})}{3}, 4\right) \cup\left[\frac{7+\sqrt{3} \mid}{3}, \infty\right)$

Solution $=\left(-\infty, \frac{13-\sqrt{133}}{2}\right] \cup(1,4) \cup\left[\frac{13+\sqrt{133}}{2}, \infty\right)$

GRAPH

5. Kryptonite is a radioactive isotope. After t years, a 50 -gram sample of kryptonite decays according to the model

$$
K(t)=50\left(3^{-0.2 t}\right)
$$

Step 1. How much of a 50 -gram sample of kryptonite would remain after 7 years? Round to 3 decimal places.
Step 2. Superman would be harmed by 15 or more grams of kryptonite. How long would it take for the remaining amount of a 50-gram sample of kryptonite to be harmless to Superman? Round to 1 decimal place.

$$
\begin{aligned}
& \text { 1) } K(7)=50\left(3^{-2(7)}\right) \approx 10.74 \text { GRAMS } \\
& \text { 2) After } K(t)=15 \text {, superman would búsAFE } \\
& \text { SOLVE EAMPMLALLY } \\
& \underbrace{50\left(3^{-0.2 t}\right)}_{1 / 1}=\underbrace{15}_{1 / 2} \\
& \text { TI-84: } 2^{\mu \infty}+\text { TRAn } 8+5 \\
& \text { About } 5.5 \text { yates (lobo Safe } 5.6 \text { Yabrs) }
\end{aligned}
$$

6. Consider the factored polynomial

$$
f(x)=(x-3)^{2}(x+3)^{2}(x-1)
$$

Step 1. Determine the zeros) of f. If there are none, state "none".
Step 2. Determine the set, in interval notation, on which f is positive. If there are none, state "none".
Step 3. Using technology, determine the turning points of f (specifying if maximum or minimum, and approximating if needed).
HONOR only. Determine the set, in interval notation, on which f is decreasing. If there are none, state "none".

$$
\begin{aligned}
& \text { 1) Lena's: } x=3,-3,1 \\
& \text { 2) table } \\
& f(x)>0 \text { on }(1,3) \cup(3, \infty) \\
& \text { 3) RMMWA: }(-1,-128) ;(3,0) \\
& \text { Relative maxima: }(-3,0) ;(1.8,26.542)
\end{aligned}
$$

4) From Grable and turbit- points:

$$
f(x) \text { DECREASINE on }(-3,-1) \cup(1.8,3)
$$

7. Use polynomial long division to factor the following polynomial function $f(x)$, knowing that $x=3+i$ is a complex root of multiplicity 1 , then state all the roots of $f(x)$.

$$
f(x)=6 x^{4}-35 x^{3}+52 x^{2}+22 x-20
$$

I) If $3+i$ is A root then also $\overline{3+i}=3-i$ is a root with SAmba moctipleity (F.T.A), thandañe $(x-(3+i))(x-(3-i))$ Divides $f(x)$

$$
(x-(3+i))(x-(3-i))=x^{2}-(3-i) x-(3+i) x+(3+i)(3-i)
$$

$$
=x^{2}-6 x+9-i^{2}=x^{2}-6 x+10
$$

II) $x^{2}-6 x+10\left[\begin{array}{l}\frac{6 x^{2}+x-2}{6 x^{4}-35 x^{3}+52 x^{2}+22 x-20} \\ \frac{6 x^{4}-36 x^{3}+60 x^{2}}{x^{3}-8 x^{2}+22 x-20} \\ \frac{x^{3}-6 x^{2}+10 x}{-2 x^{2}+12 x-20}\end{array}\right.$

THEN III)

$$
f(x)=(x-(3+i))(x-(3-i))\left(6 x^{2}+x-2\right)
$$

$$
6 x^{2}+x-2
$$

$$
-12 \left\lvert\, \begin{array}{l|l|l}
-1 & -2 & -3 \\
\hline 12 & 6 & 4
\end{array}\right.
$$

$$
6 x^{2}+4 x-3 x-2
$$

$$
\sin =1
$$

V)

$$
\frac{-2 x^{2}+12 x-2 \theta}{\theta}
$$

Then

$$
2 x(3 x+2)-1(3 x+2)
$$

$(3 x+2)(2 x-1)$

$$
\begin{array}{r}
f(x)=(x-(3+i))(x-(3-i))(3 x+2)(2 x-1) \\
t \quad t \\
x=-\frac{2}{3} \quad x=\frac{1}{2}
\end{array}
$$

VII ROOT: $\quad x=3+i, 3-i,-\frac{2}{3}, \frac{1}{2}$

