Notes

Let (G, \cdot) be a finite group with multiplicative notation, then

- for $a \in G$ and $b \in G$ we usually write $a \cdot b$ as $a b$;
- u denotes the neutral element of G;
- the inverse of $a \in G$ is denoted by a^{-1};
- $|G|$ denotes the order of G, that is the number of elements in G. For instance S_{n}, the symmetric group on n elements, is such that $\left|S_{n}\right|=n!=n \cdot(n-1) \ldots 3 \cdot 2$;
- for every $x \in G$ the powers of x are defined by recursion (induction) as

1. $x^{0}=u$,
2. $x^{n}=x^{n-1} x$, for every $n \in \mathbb{N}$,
and the least natural number n such that $x^{n}=u$ is called the order of x (it is defined because \mathbb{N} is well-ordered and G is finite) and the order of x is denoted by $\circ(x)$ or $|x|$; in additive notation we define the n-th multiples of x by
3. $0 x=u$,
4. $n x=n-1 x+x$, for every $n \in \mathbb{N}$.

- if (F, \odot) is another group and $f: G \mapsto F$ is a function, we say that f is a homomorphism of groups when for all $a \in G$ and $b \in G$ it is

$$
f(a \cdot b)=f(a) \odot f(b)
$$

Moreover, we say that f is an isomorphism when it is also bijective, that is 1 -to- 1 and onto, and we say that G and F are isomorphic, denoting $G \cong F$.

By definition a subset $H \subset G$ is a subgroup of G if (H, \cdot) is a group: in particular $u \in H$ and H can not be empty. For instance, if $f: G \mapsto F$ is a homomorphism of groups then $\operatorname{ker} f=\left\{a \in G\right.$ such that $\left.f(a)=u_{F}\right\}$ is a subgroup of G (note, u_{F} is the neutral element in F).

Proposition 0.1 H is a subgroup of G if and only if

$$
a, b \in H \Rightarrow a b^{-1} \in H
$$

We use the notation $H \leq G$ when H is a subgroup of G.
Proposition 0.2 Let $x \in G$, then

$$
\langle x\rangle=\left\{x^{n} \in G: n \in \mathbb{N}\right\}
$$

is a subgroup of G, called cyclic subgroup generated by $x . G$ is said cyclic if $G=\langle x\rangle$, in which case x is called a generator of G.

Theorem 0.3 (Lagrange) The order of a subgroup divides the order of the group, that is

$$
H \leq G \Rightarrow|G|=r|H|
$$

by definition $r=|G: H|$ is called the index of H in G.
In particular, the order of every element of G divides the order of G.
Theorem 0.4 (Cayley) If $|G|=n$ then G is the isomorphic copy of a subgroup of S_{n}, the symmetric group on n elements.

Proposition 0.5 Let $H \leq G, a \in G$, and $b \in G$, then

1. the relation

$$
a \mathcal{L}_{H} b \Leftrightarrow b^{-1} a \in H
$$

defines an equivalence relation on G, whose classes of equivalence are the left cosets

$$
a H=\{a h \in G, \text { for all } h \in H\} .
$$

2. the relation

$$
a \mathcal{R}_{H} b \Leftrightarrow a b^{-1} \in H
$$

defines an equivalence relation on G, whose classes of equivalence are the right cosets

$$
H a=\{h a \in G, \text { for all } h \in H\} .
$$

Theorem 0.6 Consider the equivalence relations of Proposition 0.5, then the following conditions are equivalent to each other:

1. The equivalence relations are the same, that is

$$
a \mathcal{R}_{H} b \Leftrightarrow a \mathcal{L}_{H} b ;
$$

2. for all $g \in G$ it is $g H=H g$;
3. for all $g \in G$ and $h \in H$ it is $g h g^{-1} \in H$;
4. for all $g \in G$ it is $H=g H g^{-1}=\left\{g h g^{-1} \in G \mid h \in H\right\}$;
5. $\left(G / \mathcal{L}_{H}, \odot\right)$ and $\left(G / \mathcal{R}_{H}, \odot\right)$ are isomorphic groups, where the multiplications are defined by

$$
a H \odot b H=(a b) H
$$

and

$$
H a \odot H b=H(a b)
$$

If any of the conditions of Theorem 0.6 is satisfied, then H is said to be a normal (or invariant) subgroup of G and we write $H \triangleleft G$. Moreover, we denote by $(G / H, \cdot)$ any of the groups $\left(G / \mathcal{L}_{H}, \odot\right)$ or $\left(G / \mathcal{R}_{H}, \odot\right)$, and we call it the quotient group of G by H.
Look at examples $8,9,10$, and 13 of chapter 9 and at exercises $9.26,9.27$, and 9.36 , from the textbook " $A b$ stract Algebra", by Lloyd Jaisingh and Frank Ayres, Schaum's Outlines (Mc Graw Hill), IBN10: 0071403272. Notes from our current textbook are on EagleWeb.

Math 310-010 - Spring 2014 - Test 3 - Solutions

Instructor: Dr. Francesco Strazzullo
Instructions. SHOW YOUR WORK neatly, please. Each exercise is worth 10 points. If using a result from our textbook, make a reference to it (using the page number as well). You might also use results included in the notes attached to this test.

1. Show that the multiplicative group $\left(\mathbb{Z}_{7}^{\times}, \cdot\right)$ is isomorphic to the additive group $\left(\mathbb{Z}_{6},+\right)$ by at least
(a) providing operation tables for both groups, and
(b) describing a mapping $f: \mathbb{Z}_{6} \mapsto \mathbb{Z}_{7}$.

Solution When possible, the notation $\bar{a}=[a]_{m}$ is used.
(a) Operation tables: the operations are both commutative, therefore we don't need to write the lower triangular part of the tables.

$\left(\mathbb{Z}_{7}^{\times}, \cdot\right)$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$
$\overline{2}$		$\overline{4}$	$\overline{6}$	$\overline{1}$	$\overline{3}$	$\overline{5}$
$\overline{3}$			$\overline{2}$	$\overline{5}$	$\overline{1}$	$\overline{4}$
$\overline{4}$				$\overline{2}$	$\overline{6}$	$\overline{3}$
$\overline{5}$					$\overline{4}$	$\overline{2}$
$\overline{6}$						$\overline{1}$

Note: $\overline{2}^{2}=\overline{4}, \overline{2}^{3}=1$, then $\circ(\overline{2})=3 ; \overline{3}^{2}=\overline{2}, \overline{3}^{6}=\left(\overline{3}^{2}\right)^{3}=\overline{2}^{3}=\overline{1}$, then $\circ(\overline{3})=6$ and $\overline{3}$ is a generator of \mathbb{Z}_{7}^{\times}. Therefore \mathbb{Z}_{7}^{\times}is cyclic with $\mathbb{Z}_{7}^{\times}=\left\langle[3]_{7}\right\rangle=\left\{[3]_{7},[3]_{7}{ }^{2}=\overline{2}, \ldots,[3]_{7}{ }^{6}=\overline{1}\right\}$.

$\left(\mathbb{Z}_{6},+\right)$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$
$\overline{1}$		$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{0}$
$\overline{2}$			$\overline{4}$	$\overline{5}$	$\overline{0}$	$\overline{1}$
$\overline{3}$				$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{4}$					$\overline{2}$	$\overline{3}$
$\overline{5}$						$\overline{4}$

Note: $\left(\mathbb{Z}_{6},+\right)$ is the standard cyclic group of order 6 , with generator $[1]_{6}$, because $\mathbb{Z}_{6}=\left\langle[1]_{6}\right\rangle=$ $\left\{[1]_{6}, 2[1]_{6}=\overline{2}, \ldots, 6[1]_{6}=\overline{0}\right\}$.
(b) To describe an isomorphism $f: \mathbb{Z}_{6} \mapsto \mathbb{Z}_{7}^{\times}$one should map generator to generator, then the corresponding powers or multiples must be matched. For instance, take $f\left([1]_{6}\right)=[3]_{7}$, then $f\left([n]_{6}\right)=[3]_{7}{ }^{n}$, or more explicitly $f\left([2]_{6}\right)=[2]_{7}, f\left([3]_{6}\right)=[6]_{7}, f\left([4]_{6}\right)=[4]_{7}, f\left([5]_{6}\right)=[5]_{7}$, and $f\left([0]_{6}\right)=[1]_{7}$.
2. In S_{4} consider $L=\{(1),(13),(24),(13)(24)\}$. Use $M=\{(1),(13)\}$ to prove that invariance (or normality) of subgroups is not transitive and not induced by inclusion, that is in general

$$
J \triangleleft H \triangleleft G \text { or } J \triangleleft H \leq G \nRightarrow J \triangleleft G
$$

because in this case $J=M, H=L, G=S_{4}, M \triangleleft L$ and even if $L \triangleleft S_{4}$, then $M \notin S_{4}$. You can follow the following steps.
(a) Assume $L \leq S_{4}$ and check if $L \triangleleft S_{4}$. You can use Theorem 0.6 , for instance listing and comparing left and right cosets of L in S_{4} until you find a "counter-example" to Theorem 0.6.
(b) Assume $M \leq L$ and check if $M \triangleleft L$. You can use Theorem 0.6 , for instance listing and comparing left and right cosets of M in L until you find a "counter-example" to Theorem 0.6.
(c) Assume $M \leq S_{4}$ and check if $M \nless S_{4}$. You can use Theorem 0.6, for instance listing and comparing left and right cosets of M in S_{4} until you find a "counter-example" to Theorem 0.6.

Solution First let's list the 24 elements of S_{4} :
$(1),(12),(13),(14),(23),(24),(34)$
$(123),(132),(124),(142),(134),(143),(234),(243)$
(1234), (1243), (1324), (1342), (1432), (1423)
$(12)(34),(13)(24),(14)(23)$
these fix more than one element,
these fix only one element,
cycles which do not fix any element,
non-cycles which do not fix any element.
(a) Check if $L \triangleleft S_{4}$. We use Theorem 0.6 property (2), where now we have $G=S_{4}$ and $H=L$. We can list all the left L-cosets: these are exactly $\frac{\left|S_{4}\right|}{|L|}=\frac{24}{4}=6$. Moreover, because those in Proposition 0.5 are equivalence relations, then b is in the equivalence class $a L$ if and only if $b L=a L$. This means that (specifically in our case)

$$
a L=\{a, b, c, d\} \Leftrightarrow a L=b L=c L=d L
$$

therefore we do not have to actually compute any of the cosets $b L, c L$, or $d L$, but only check if $a L=L a$.

- $L=(1) L=(13) L=(24) L=(13)(24) L$, the right-cosets would be the same.
- $(12) L=\{(12),(12)(13),(12)(24),(12)(13)(24)\}=\{(12),(132),(124),(1324)\}$ $=(132) L=(124) L=(1324) L$. Let's compute the right coset by (12) : $L(12)=\{(12),(13)(12),(24)(12),(13)(24)(12)\}=\{(12),(123),(142),(1423)\} \neq(12) L$, therefore $L \nless S_{4}$ and we could stop. Therefore the conclusion is that $L \nrightarrow S_{4}$ and there is no need to check transitivity or invariance.

For the sake of curiosity, we obtain the partition $\frac{S_{4}}{\mathcal{L}_{L}}$ by computing the remaining four left cosets.

- $(14) L=\{(14),(14)(13),(14)(24),(14)(13)(24)\}=\{(14),(134),(142),(1342)\}$ $=(134) L=(142) L=(1342) L$;
- $(23) L=\{(23),(23)(13),(23)(24),(23)(13)(24)\}=\{(23),(123),(243),(1243)\}$ $=(123) L=(243) L=(1243) L$;
- $(34) L=\{(34),(34)(13),(34)(24),(34)(13)(24)\}=\{(34),(143),(234),(1423)\}$ $=(143) L=(234) L=(1423) L$;
- (1234)L=\{(1234),(1234)(13),(1234)(24),(1234)(13)(24)\}=\{(1234),(14)(23), , (12), $(12)(34),(1432)\}=(14)(23) L=(12)(34) L=(1432) L$.
We can write down the quotient set

$$
\frac{S_{4}}{\mathcal{L}_{L}}=\{L,(12) L,(14) L,(23) L,(34) L,(14)(23) L\}
$$

and we notice that, for instance, $(14)(23) L=(12)(34) L$, while $(12) L \odot(14) L=((12)(14)) L=$ $(142) L=(14) L$. But from the computations above,
we can see that $(12) L=(132) L$, while $(132) L \odot(14) L=((132)(14)) L=(1432) L=$ $(14)(23) L$, therefore the products $(12) L \odot(14) L$ and $(132) L \odot(14) L$ are not the same even if the factors are the same elements of $\frac{S_{4}}{\mathcal{L}_{L}}$: this product depends on the representatives. Therefore the induced product \odot on $\frac{S_{4}}{\mathcal{L}_{L}}$ does not define a group! We had to expect this because L is not normal in S_{4}.
(b) We proceed as in part (2a). Now $G=L=\{(1),(13),(24),(13)(24)\}$ and $H=M=\{(1),(13)\}$. We must list and compare left and right cosets of M in L, that is cosets of the type $g M$ for $g \in L$. As above, these are going to be $\frac{|L|}{|M|}=\frac{4}{2}=2$.

- $M=(1) M=(13) M=M(13)$.
- $(13)(24) M=\{(13)(24),(13)(24)(13)\}=\{(13)(24),(24)\}=(24) M$, and $M(13)(24)=\{(13)(24),(13)(13)(24)\}=\{(13)(24),(24)\}=(13)(24) M$
Therefore $M \triangleleft L$.
(c) In order to prove that $M \nrightarrow S_{4}$, we can still use Theorem 0.6 property (2), for $G=S_{4}$ and $H=M$. We only need to find one element $g \in S_{4}$ such that $g H \neq H g$. Let's use, for instance, $g=(123)$:

$$
\begin{aligned}
& (123) M=\{(123),(123)(13)\}=\{(123),(23)\} \\
& M(123)=\{(123),(13)(123)\}=\{(123),(12)\} \neq(123) M
\end{aligned}
$$

3. The only (up to isomorphism) non-cyclic group of order 4 is Klein 4 -group K (see example 3.3.3, page 119). $K=\{1, i, j, k\}$ has multiplication table

\cdot	1	i	j	k
1	1	i	j	k
i	i	1	k	j
j	j	k	1	i
k	k	j	i	1

Note: $i^{2}=j^{2}=k^{2}=1$

Is K isomorphic to the group L in Exercise 2? Justify your answer by either providing an isomorphism or arguments against the existence of an isomorphism.

Solution For $L=\{(1),(13),(24),(13)(24)\}$ one can compute

$$
(13)^{2}=(24)^{2}=(13)(24)^{2}=(1)
$$

therefore L has all non-neutral elements of order 2 , then L is a non-cyclic group of order 4 and it must be isomorphic to K. One isomorphism is $f: K \mapsto L$ such that $f(1)=(1), f(i)=(13), f(j)=(24)$, and $f(k)=(13)(24)$.
4. Consider again Klein 4-group from Exercise 3. In example 3.3.3 at page $119, \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ denotes the direct product $\left(\mathbb{Z}_{2},+\right) \times\left(\mathbb{Z}_{2},+\right)$, which is an additive copy of K.
Following Proposition 3.3.4 at page 118, the direct product of two groups $(G, *)$ and (F, \odot) is defined as the algebraic structure over the cartesian product $G \times F$ with component-by-component operation $*$ such that

$$
\left(a_{1}, b_{1}\right) \circledast\left(a_{2}, b_{2}\right)=\left(a_{1} * a_{2}, b_{1} \odot b_{2}\right) .
$$

Write the multiplication table of the direct product $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$, using the notation 0 and 1 for the first components, and $\bar{a}=[a]_{4}$ for the second ones, then starting the table with the pairs $(0, \overline{0})$ and $(0, \overline{2})$.

Solution Actually in this case the factor structures are both additive and we can talk about the addition table of a direct sum. The order is $\left|\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right|=\left|\mathbb{Z}_{2}\right| \cdot\left|\mathbb{Z}_{4}\right|=2 \cdot 4=8$. In particular, both factor structures are abelian, therefore the direct sum will be abelian and this group cannot be isomorphic to Q, the Quaternion group.

+	$(0, \overline{0})$	$(0, \overline{2})$	$(0, \overline{1})$	$(0, \overline{3})$	$(1, \overline{0})$	$(1, \overline{2})$	$(1, \overline{1})$	$(1, \overline{3})$
$(0, \overline{0})$	$(0, \overline{0})$	$(0, \overline{2})$	$(0, \overline{1})$	$(0, \overline{3})$	$(1, \overline{0})$	$(1, \overline{2})$	$(1, \overline{1})$	$(1, \overline{3})$
$(0, \overline{2})$		$(0, \overline{0})$	$(0, \overline{3})$	$(0, \overline{1})$	$(1, \overline{2})$	$(1, \overline{0})$	$(1, \overline{3})$	$(1, \overline{1})$
$(0, \overline{1})$			$(0, \overline{2})$	$(0, \overline{0})$	$(1, \overline{1})$	$(1, \overline{3})$	$(1, \overline{2})$	$(1, \overline{0})$
$(0, \overline{3})$				$(0, \overline{2})$	$(1, \overline{3})$	$(1, \overline{1})$	$(1, \overline{0})$	$(1, \overline{2})$
$(1, \overline{0})$					$(0, \overline{0})$	$(0, \overline{2})$	$(0, \overline{1})$	$(0, \overline{3})$
$(1, \overline{2})$						$(0, \overline{0})$	$(0, \overline{3})$	$(0, \overline{1})$
$(1, \overline{1})$							$(0, \overline{2})$	$(0, \overline{0})$
$(1, \overline{3})$								$(0, \overline{2})$

The table above completes this exercise.
For curiosity's sake, let's look at the order of these elements, knowing that the neutral element is $(0, \overline{0})$.

$$
\begin{aligned}
& 2(0, \overline{2})=2(1, \overline{0})=2(1, \overline{2})=(0, \overline{0}) \Rightarrow \circ(0, \overline{2})=\circ(1, \overline{0})=\circ(1, \overline{2})=2 \\
& 2(0, \overline{1})=2(0, \overline{3})=2(1, \overline{1})=(0, \overline{2}) \Rightarrow \circ(0, \overline{1})=\circ(1, \overline{1})=\circ(0, \overline{2})=4 .
\end{aligned}
$$

Therefore this group is not cyclic.
5. Consider the (multiplicative) Quaternion group $Q=\{1,-1, i, j, k,-i,-j,-k\}$ (see example 3.3.7, page 122).
(a) What is the order of Q ?
(b) Provide a subgroup of order 6 in Q if possible (justify your answer).
(c) Provide a subgroup of order 4 in Q if possible (justify your answer).
(d) Provide a subgroup of order 2 in Q if possible (justify your answer).
(e) Provide an additive copy $(G,+)$ of Q with the corresponding table of operations and isomorphism if possible (justify your answer).

Solution The multiplication table of Q is

\cdot	1	-1	i	j	k	$-i$	$-j$	$-k$
1	1	-1	i	j	k	$-i$	$-j$	$-k$
-1	-1	1	$-i$	$-j$	$-k$	i	j	k
i	i	$-i$	-1	k	$-j$	1	$-k$	j
j	j	$-j$	$-k$	-1	i	k	1	$-i$
k	k	$-k$	j	$-i$	-1	$-j$	i	1
$-i$	$-i$	i	1	$-k$	j	-1	k	$-j$
$-j$	$-j$	j	k	1	$-i$	$-k$	-1	i
$-k$	$-k$	k	$-j$	i	1	j	$-i$	-1

Note: $\quad i^{2}=j^{2}=k^{2}=-1$
$i^{3}=-i, j^{3}=-j, k^{3}=-k$
$i^{4}=j^{4}=k^{4}=1$
$(-1)^{2}=1$
(a) The order of Q is 8 (the number of its elements).
(b) By Lagrange (Theorem 0.3), there isn't any subgroup of order 6 in Q because 6 doesn't divide 8 .
(c) $\langle i\rangle=\{i,-1,-i, 1\}$ is a subgroup of order 4 in Q.
(d) $\langle-1\rangle=\{-1,1\}$ is a subgroup of order 2 in Q.
(e) Define $(G,+)$ with $G=\{0, \overline{0}, a, \bar{a}, b, \bar{b}, c, \bar{c}\}$ and the operation with additive table such that $2 \overline{0}=0$, $2 a=2 b=2 c=\overline{0}, a+b=c$, and $\bar{a}+b=\bar{c}$. Moreover, $3 x=\overline{0}+x=\bar{x}$ for $x \in\{a, b, c\}$, and $4 a=4 b=4 c=0$:

+	0	$\overline{0}$	a	b	c	\bar{a}	\bar{b}	\bar{c}
0	0	$\overline{0}$	a	b	c	\bar{a}	\bar{b}	\bar{c}
$\overline{0}$	$\overline{0}$	0	\bar{a}	\bar{b}	\bar{c}	a	b	c
a	a	\bar{a}	$\overline{0}$	c	\bar{b}	0	\bar{c}	b
b	b	\bar{b}	\bar{c}	$\overline{0}$	a	c	0	\bar{a}
c	c	\bar{c}	b	\bar{a}	$\overline{0}$	\bar{b}	a	0
\bar{a}	\bar{a}	a	0	\bar{c}	b	$\overline{0}$	c	\bar{b}
\bar{b}	\bar{b}	b	c	0	$\overline{0}$	\bar{c}	$\overline{0}$	a
\bar{c}	\bar{c}	c	\bar{b}	a	0	b	\bar{a}	$\overline{0}$

An isomorphism $f: Q \mapsto G$ must have $f(1)=0$ and $f(-1)=\overline{0}$, then we could choose, for instance, $f(i)=a$ and $f(j)=b$, then all the other mappings must follow according to the multiplication and additive tables: in this case it must be $f(-i)=\bar{a}$ and so on.
6. Using isomorphisms we can classify groups, that is provide "standard copies" of groups with given order. For instance any group of order a prime number p is isomorphic to $\left(\mathbb{Z}_{p},+\right)$, while other are isomorphic to Klein's 4-group, the Quaternion group, and so on. According to Cayley's Theorem any group G is isomorphic to a subgroup of a symmetric group.

Classify the multiplicative group $G=\left(\mathbb{Z}_{8}^{\times}, \cdot\right)$, that is find
(a) the order of G,
(b) the multiplication table of G and the order of its elements, and
(c) a known (or standard) isomorphic copy of G with an isomorphism.

Solution \mathbb{Z}_{8}^{\times}is the group of units in \mathbb{Z}_{8}, that is the congruence classes $[a]_{8}=\bar{a}$ with representative a coprime with 8 . Then $\mathbb{Z}_{8}^{\times}=\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$.
(a) The order of G is 4 .
(b) Because G is abelian, only the upper-triangular part of the multiplication table must be reported

\cdot	$\overline{1}$	$\overline{3}$	$\overline{5}$	$\overline{7}$
$\overline{1}$	$\overline{1}$	$\overline{3}$	$\overline{5}$	$\overline{7}$
$\overline{3}$		$\overline{1}$	$\overline{7}$	$\overline{5}$
$\overline{5}$			$\overline{1}$	$\overline{3}$
$\overline{7}$				$\overline{1}$

Note: $\overline{3}^{2}=\overline{5}^{2}=\overline{7}^{2}=\overline{1}$
in particular there isn't any element with order 4 and G is not cyclic.
(c) The only (up to isomorphisms) non-cyclic group of order 4 is Klein 4 -group (see exercise 3). Therefore G is isomorphic to K and an isomorphism $f: K \rightarrow G$ is given by $f(1)=\overline{1}, f(i)=\overline{3}$, $f(j)=\overline{5}$, and consequently $f(k)=f(i j)=f(i) f(j)=\overline{3} \overline{5}=\overline{7}$.

