Notes

Let (G, \cdot) be a finite group with multiplicative notation, then

- for $a \in G$ and $b \in G$ we usually write $a \cdot b$ as ab;
- u denotes the neutral element of G;
- the inverse of $a \in G$ is denoted by a^{-1} ;
- |G| denotes the order of G, that is the number of elements in G. For instance S_n , the symmetric group on n elements, is such that $|S_n| = n! = n \cdot (n-1) \dots 3 \cdot 2;$
- for every $x \in G$ the powers of x are defined by *recursion* (induction) as

1.
$$x^0 = u$$
,
2. $x^n = x^{n-1}x$, for every $n \in \mathbb{N}$,

and the least natural number n such that $x^n = u$ is called the order of x (it is defined because \mathbb{N} is well-ordered and G is finite) and the order of x is denoted by $\circ(x)$ or |x|; in additive notation we define the *n*-th multiples of x by

1.
$$0x = u$$
,

- 2. nx = n 1x + x, for every $n \in \mathbb{N}$.
- if (F, \odot) is another group and $f : G \mapsto F$ is a function, we say that f is a homomorphism of groups when for all $a \in G$ and $b \in G$ it is

$$f(a \cdot b) = f(a) \odot f(b).$$

Moreover, we say that f is an *isomorphism* when it is also bijective, that is 1-to-1 and onto, and we say that G and F are isomorphic, denoting $G \cong F$.

By definition a subset $H \subset G$ is a subgroup of G if (H, \cdot) is a group: in particular $u \in H$ and H can not be empty. For instance, if $f: G \mapsto F$ is a homomorphism of groups then ker $f = \{a \in G \text{ such that } f(a) = u_F\}$ is a subgroup of G (note, u_F is the neutral element in F).

Proposition 0.1 H is a subgroup of G if and only if

$$a, b \in H \Rightarrow ab^{-1} \in H.$$

We use the notation $H \leq G$ when H is a subgroup of G.

Proposition 0.2 Let $x \in G$, then

$$\langle x \rangle = \{ x^n \in G : n \in \mathbb{N} \}$$

is a subgroup of G, called cyclic subgroup generated by x. G is said cyclic if $G = \langle x \rangle$, in which case x is called a generator of G.

Theorem 0.3 (Lagrange) The order of a subgroup divides the order of the group, that is

$$H \le G \Rightarrow |G| = r|H|,$$

by definition r = |G:H| is called the index of H in G.

In particular, the order of every element of G divides the order of G.

Theorem 0.4 (Cayley) If |G| = n then G is the isomorphic copy of a subgroup of S_n , the symmetric group on n elements.

Proposition 0.5 Let $H \leq G$, $a \in G$, and $b \in G$, then

1. the relation

$$a \mathcal{L}_H b \Leftrightarrow b^{-1} a \in H$$

defines an equivalence relation on G, whose classes of equivalence are the left cosets

$$aH = \{ah \in G, for all h \in H\}.$$

2. the relation

$$a \mathcal{R}_H b \Leftrightarrow ab^{-1} \in H$$

defines an equivalence relation on G, whose classes of equivalence are the right cosets

$$Ha = \{ha \in G, for all h \in H\}.$$

Theorem 0.6 Consider the equivalence relations of Proposition 0.5, then the following conditions are equivalent to each other:

1. The equivalence relations are the same, that is

$$a \mathcal{R}_H b \Leftrightarrow a \mathcal{L}_H b;$$

- 2. for all $g \in G$ it is gH = Hg;
- 3. for all $g \in G$ and $h \in H$ it is $ghg^{-1} \in H$;
- 4. for all $g \in G$ it is $H = gHg^{-1} = \{ghg^{-1} \in G \mid h \in H\};$
- 5. $(G/\mathcal{L}_H, \odot)$ and $(G/\mathcal{R}_H, \odot)$ are isomorphic groups, where the multiplications are defined by

$$aH \odot bH = (ab)H$$

and

$$Ha \odot Hb = H(ab)$$

If any of the conditions of Theorem 0.6 is satisfied, then H is said to be a *normal* (or invariant) subgroup of G and we write $H \triangleleft G$. Moreover, we denote by $(G/H, \cdot)$ any of the groups $(G/\mathcal{L}_H, \odot)$ or $(G/\mathcal{R}_H, \odot)$, and we call it the quotient group of G by H.

Look at examples 8, 9, 10, and 13 of chapter 9 and at exercises 9.26, 9.27, and 9.36, from the textbook "Abstract Algebra", by Lloyd Jaisingh and Frank Ayres, Schaum's Outlines (Mc Graw Hill), IBN10: 0071403272. Notes from our current textbook are on EagleWeb. Instructor: Dr. Francesco Strazzullo

Instructions. SHOW YOUR WORK neatly, please. Each exercise is worth 10 points. If using a result from our textbook, make a reference to it (using the page number as well). You might also use results included in the notes attached to this test.

- 1. Show that the multiplicative group $(\mathbb{Z}_7^{\times}, \cdot)$ is isomorphic to the additive group $(\mathbb{Z}_6, +)$ by at least
 - (a) providing operation tables for both groups, and
 - (b) describing a mapping $f : \mathbb{Z}_6 \mapsto \mathbb{Z}_7$.

Solution When possible, the notation $\bar{a} = [a]_m$ is used.

(a) Operation tables: the operations are both commutative, therefore we don't need to write the lower triangular part of the tables.

1	$\overline{2}$	$\bar{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$
Ī	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$
	$\bar{4}$	$\overline{6}$	ī	$\bar{3}$	$\overline{5}$
		$\overline{2}$	$\overline{5}$	$\overline{1}$	$\overline{4}$
			$\overline{2}$	$\overline{6}$	$\bar{3}$
				$\overline{4}$	$\overline{2}$
					ī
		$\overline{1}$ $\overline{2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note: $\bar{2}^2 = \bar{4}, \bar{2}^3 = 1$, then $\circ(\bar{2}) = 3; \bar{3}^2 = \bar{2}, \bar{3}^6 = (\bar{3}^2)^3 = \bar{2}^3 = \bar{1}$, then $\circ(\bar{3}) = 6$ and $\bar{3}$ is a generator of \mathbb{Z}_7^{\times} . Therefore \mathbb{Z}_7^{\times} is cyclic with $\mathbb{Z}_7^{\times} = \langle [3]_7 \rangle = \left\{ [3]_7, [3]_7^2 = \bar{2}, \dots, [3]_7^6 = \bar{1} \right\}$.

$(\mathbb{Z}_6,+)$	ō	ī	$\overline{2}$	$\bar{3}$	$\bar{4}$	$\overline{5}$
$\bar{0}$	ō	ī	$\overline{2}$	$\bar{3}$	$\bar{4}$	$\overline{5}$
$\overline{1}$		$\overline{2}$	$\bar{3}$	$\bar{4}$	$\overline{5}$	$\bar{0}$
$\overline{2}$			$\overline{4}$	$\overline{5}$	$\bar{0}$	ī
$\bar{3}$				$\bar{0}$	ī	$\overline{2}$
$\overline{4}$					$\overline{2}$	$\overline{3}$
$\overline{5}$						$\overline{4}$

Note: $(\mathbb{Z}_6, +)$ is the standard cyclic group of order 6, with generator $[1]_6$, because $\mathbb{Z}_6 = \langle [1]_6 \rangle = \{[1]_6, 2[1]_6 = \overline{2}, \dots, 6[1]_6 = \overline{0}\}.$

- (b) To describe an isomorphism $f : \mathbb{Z}_6 \to \mathbb{Z}_7^{\times}$ one should map generator to generator, then the corresponding powers or multiples must be matched. For instance, take $f([1]_6) = [3]_7$, then $f([n]_6) = [3]_7^n$, or more explicitly $f([2]_6) = [2]_7$, $f([3]_6) = [6]_7$, $f([4]_6) = [4]_7$, $f([5]_6) = [5]_7$, and $f([0]_6) = [1]_7$.
- 2. In S_4 consider $L = \{(1), (13), (24), (13)(24)\}$. Use $M = \{(1), (13)\}$ to prove that invariance (or normality) of subgroups is not transitive and not induced by inclusion, that is in general

$$J \lhd H \lhd G \text{ or } J \lhd H \leq G \Rightarrow J \lhd G,$$

because in this case J = M, H = L, $G = S_4$, $M \triangleleft L$ and even if $L \triangleleft S_4$, then $M \not \triangleleft S_4$. You can follow the following steps.

- (a) Assume $L \leq S_4$ and check if $L \triangleleft S_4$. You can use Theorem 0.6, for instance listing and comparing left and right cosets of L in S_4 until you find a "counter-example" to Theorem 0.6.
- (b) Assume $M \leq L$ and check if $M \triangleleft L$. You can use Theorem 0.6, for instance listing and comparing left and right cosets of M in L until you find a "counter-example" to Theorem 0.6.
- (c) Assume $M \leq S_4$ and check if $M \not \lhd S_4$. You can use Theorem 0.6, for instance listing and comparing left and right cosets of M in S_4 until you find a "counter-example" to Theorem 0.6.

Solution First let's list the 24 elements of S_4 :

(1), (12), (13), (14), (23), (24), (34)	these fix more than one element,
(123), (132), (124), (142), (134), (143), (234), (243)	these fix only one element,
(1234), (1243), (1324), (1342), (1432), (1423)	cycles which do not fix any element,
(12)(34),(13)(24),(14)(23)	non-cycles which do not fix any element.

(a) Check if $L \triangleleft S_4$. We use Theorem 0.6 property (2), where now we have $G = S_4$ and H = L. We can list all the left *L*-cosets: these are exactly $\frac{|S_4|}{|L|} = \frac{24}{4} = 6$. Moreover, because those in Proposition 0.5 are equivalence relations, then *b* is in the equivalence class *aL* if and only if bL = aL. This means that (specifically in our case)

$$aL = \{a, b, c, d\} \Leftrightarrow aL = bL = cL = dL,$$

therefore we do not have to actually compute any of the cosets bL, cL, or dL, but only check if aL = La.

- L = (1)L = (13)L = (24)L = (13)(24)L, the right-cosets would be the same.
- $(12)L = \{(12), (12)(13), (12)(24), (12)(13)(24)\} = \{(12), (132), (124), (1324)\}$ = (132)L = (124)L = (1324)L. Let's compute the right coset by (12): $L(12) = \{(12), (13)(12), (24)(12), (13)(24)(12)\} = \{(12), (123), (142), (1423)\} \neq (12)L$, therefore $L \not \lhd S_4$ and we could stop. Therefore the conclusion is that $L \not \lhd S_4$ and there is no need to check transitivity or invariance.

For the sake of curiosity, we obtain the partition $\frac{S_4}{\mathcal{L}_L}$ by computing the remaining four left cosets.

- $(14)L = \{(14), (14)(13), (14)(24), (14)(13)(24)\} = \{(14), (134), (142), (1342)\} = (134)L = (142)L = (1342)L;$
- $(23)L = \{(23), (23)(13), (23)(24), (23)(13)(24)\} = \{(23), (123), (243), (1243)\} = (123)L = (243)L = (1243)L;$
- $(34)L = \{(34), (34)(13), (34)(24), (34)(13)(24)\} = \{(34), (143), (234), (1423)\} = (143)L = (234)L = (1423)L;$
- $(1234)L = \{(1234), (1234)(13), (1234)(24), (1234)(13)(24)\} = \{(1234), (14)(23), (12)(34), (1432)\} = (14)(23)L = (12)(34)L = (1432)L.$

We can write down the quotient set

$$\frac{S_4}{\mathcal{L}_L} = \{L, (1\,2)L, (1\,4)L, (2\,3)L, (3\,4)L, (1\,4)(2\,3)L\}$$

and we notice that, for instance, (14)(23)L = (12)(34)L, while $(12)L \odot (14)L = ((12)(14))L = (142)L = (14)L$. But from the computations above,

we can see that (12)L = (132)L, while $(132)L \odot (14)L = ((132)(14))L = (1432)L = (14)(23)L$, therefore the products $(12)L \odot (14)L$ and $(132)L \odot (14)L$ are not the same even if the factors are the same elements of $\frac{S_4}{\mathcal{L}_L}$: this product depends on the representatives. Therefore the induced product \odot on $\frac{S_4}{\mathcal{L}_L}$ does not define a group! We had to expect this because L is not normal in S_4 .

- (b) We proceed as in part (2a). Now $G = L = \{(1), (13), (24), (13)(24)\}$ and $H = M = \{(1), (13)\}$. We must list and compare left and right cosets of M in L, that is cosets of the type gM for $g \in L$. As above, these are going to be $\frac{|L|}{|M|} = \frac{4}{2} = 2$.
 - M = (1)M = (13)M = M(13).
 - $(13)(24)M = \{(13)(24), (13)(24)(13)\} = \{(13)(24), (24)\} = (24)M$, and $M(13)(24) = \{(13)(24), (13)(13)(24)\} = \{(13)(24), (24)\} = (13)(24)M$

Therefore $M \lhd L$.

(c) In order to prove that $M \not \lhd S_4$, we can still use Theorem 0.6 property (2), for $G = S_4$ and H = M. We only need to find one element $g \in S_4$ such that $gH \neq Hg$. Let's use, for instance, g = (123):

 \checkmark

$$\begin{array}{l} (1\,2\,3)M = \{(1\,2\,3),(1\,2\,3)(1\,3)\} = \{(1\,2\,3),(2\,3)\} \\ M(1\,2\,3) = \{(1\,2\,3),(1\,3)(1\,2\,3)\} = \{(1\,2\,3),(1\,2)\} \neq (1\,2\,3)M \end{array} \quad \checkmark \label{eq:Marginal}$$

3. The only (up to isomorphism) non-cyclic group of order 4 is Klein 4-group K (see example 3.3.3, page 119). $K = \{1, i, j, k\}$ has multiplication table

•	1	i	j	k	
1	1	i	j	k	
i	i	1	k	j	Note: $i^2 = j^2 = k^2 =$
j	j	k	1	i	
k	k	j	i	1	

Is K isomorphic to the group L in Exercise 2? Justify your answer by either providing an isomorphism or arguments against the existence of an isomorphism.

Solution For $L = \{(1), (13), (24), (13)(24)\}$ one can compute

$$(13)^2 = (24)^2 = (13)(24)^2 = (1),$$

therefore L has all non-neutral elements of order 2, then L is a non-cyclic group of order 4 and it must be isomorphic to K. One isomorphism is $f: K \mapsto L$ such that f(1) = (1), f(i) = (13), f(j) = (24),and f(k) = (13)(24).

4. Consider again Klein 4-group from Exercise 3. In example 3.3.3 at page 119, $\mathbb{Z}_2 \times \mathbb{Z}_2$ denotes the direct product $(\mathbb{Z}_2, +) \times (\mathbb{Z}_2, +)$, which is an additive copy of K.

Following Proposition 3.3.4 at page 118, the direct product of two groups (G, *) and (F, \odot) is defined as the algebraic structure over the cartesian product $G \times F$ with *component-by-component* operation \circledast such that

$$(a_1, b_1) \circledast (a_2, b_2) = (a_1 * a_2, b_1 \odot b_2).$$

Write the multiplication table of the direct product $\mathbb{Z}_2 \times \mathbb{Z}_4$, using the notation 0 and 1 for the first components, and $\bar{a} = [a]_4$ for the second ones, then starting the table with the pairs $(0, \bar{0})$ and $(0, \bar{2})$.

Solution Actually in this case the factor structures are both additive and we can talk about the *addition table* of a *direct sum*. The order is $|\mathbb{Z}_2 \times \mathbb{Z}_4| = |\mathbb{Z}_2| \cdot |\mathbb{Z}_4| = 2 \cdot 4 = 8$. In particular, both factor structures are abelian, therefore the direct sum will be abelian and this group *cannot be isomorphic to Q*, the Quaternion group.

+	$(0, \bar{0})$	$(0, \overline{2})$	$(0, \overline{1})$	$(0, \bar{3})$	$(1, \bar{0})$	$(1, \overline{2})$	$(1,\overline{1})$	$(1, \bar{3})$
$(0, \overline{0})$	$(0,ar{0})$	$(0, \bar{2})$	$(0, \overline{1})$	$(0, \bar{3})$	$(1, \bar{0})$	$(1, \overline{2})$	$(1,\overline{1})$	$(1,\bar{3})$
$(0, \overline{2})$		$(0,ar{0})$	$(0, \bar{3})$	$(0, \overline{1})$	$(1, \overline{2})$	$(1, \bar{0})$	$(1,\bar{3})$	$(1,\overline{1})$
$(0, \overline{1})$			$(0, \bar{2})$	$(0,ar{0})$	$(1, \overline{1})$	$(1, \bar{3})$	$(1,\bar{2})$	$(1,\bar{0})$
$(0, \bar{3})$				$(0, \bar{2})$	$(1, \bar{3})$	$(1,\bar{1})$	$(1,\bar{0})$	$(1,\bar{2})$
$(1, \overline{0})$					$(0,ar{0})$	$(0, \bar{2})$	$(0,\bar{1})$	$(0, \bar{3})$
$(1, \bar{2})$						$(0, \bar{0})$	$(0,\bar{3})$	$(0, \bar{1})$
$(1,\overline{1})$							$(0,\bar{2})$	$(0,\bar{0})$
$(1, \bar{3})$								$(0,\bar{2})$

The table above completes this exercise.

For curiosity's sake, let's look at the order of these elements, knowing that the neutral element is $(0, \bar{0})$.

$$2(0,\bar{2}) = 2(1,\bar{0}) = 2(1,\bar{2}) = (0,\bar{0}) \Rightarrow \circ(0,\bar{2}) = \circ(1,\bar{0}) = \circ(1,\bar{2}) = 2,$$

$$2(0,\bar{1}) = 2(0,\bar{3}) = 2(1,\bar{1}) = (0,\bar{2}) \Rightarrow \circ(0,\bar{1}) = \circ(1,\bar{1}) = \circ(0,\bar{2}) = 4.$$

Therefore this group is not cyclic.

- 5. Consider the (multiplicative) Quaternion group $Q = \{1, -1, i, j, k, -i, -j, -k\}$ (see example 3.3.7, page 122).
 - (a) What is the order of Q?
 - (b) Provide a subgroup of order 6 in Q if possible (justify your answer).
 - (c) Provide a subgroup of order 4 in Q if possible (justify your answer).
 - (d) Provide a subgroup of order 2 in Q if possible (justify your answer).
 - (e) Provide an **additive copy** (G, +) of Q with the corresponding table of operations and isomorphism if possible (justify your answer).

Solution The multiplication table of Q is

•	1	-1	i	j	k	-i	-j	-k
1	1	-1	i	j	k	-i	-j	-k
-1	-1	1	-i	-j	-k	i	j	k
i	i	-i	-1	k	-j	1	-k	j
j	j	-j	-k	-1	i	k	1	-i
k	k	-k	j	-i	-1	-j	i	1
-i	-i	i	1	-k	j	-1	k	-j
j	-j	j	k	1	-i	-k	-1	i
-k	-k	k	-j	i	1	j	-i	-1

Note:
$$i^2 = j^2 = k^2 = -1$$

 $i^3 = -i, j^3 = -j, k^3 = -k$
 $i^4 = j^4 = k^4 = 1$
 $(-1)^2 = 1$

- (a) The order of Q is 8 (the number of its elements).
- (b) By Lagrange (Theorem 0.3), there isn't any subgroup of order 6 in Q because 6 doesn't divide 8.
- (c) $\langle i \rangle = \{i, -1, -i, 1\}$ is a subgroup of order 4 in Q.
- (d) $\langle -1 \rangle = \{-1, 1\}$ is a subgroup of order 2 in Q.

(e) Define (G, +) with $G = \{0, \overline{0}, a, \overline{a}, b, \overline{b}, c, \overline{c}\}$ and the operation with additive table such that $2\overline{0} = 0$, $2a = 2b = 2c = \overline{0}, a + b = c$, and $\overline{a} + \overline{b} = \overline{c}$. Moreover, $3x = \overline{0} + x = \overline{x}$ for $x \in \{a, b, c\}$, and 4a = 4b = 4c = 0:

+	0	ō	a	b	c	ā	\bar{b}	\bar{c}
0	0	$\overline{0}$	a	b	c	ā	\bar{b}	\bar{c}
$\bar{0}$	$\bar{0}$	0	ā	\bar{b}	\bar{c}	a	b	c
a	a	ā	ō	c	\bar{b}	0	\bar{c}	b
b	b	\bar{b}	\bar{c}	ō	a	c	0	ā
с	c	\bar{c}	b	ā	$\bar{0}$	\bar{b}	a	0
ā	ā	a	0	\bar{c}	b	$\bar{0}$	с	\overline{b}
\bar{b}	\overline{b}	b	c	0	ō	\bar{c}	ō	a
\bar{c}	\bar{c}	с	\bar{b}	a	0	b	ā	$\bar{0}$

An isomorphism $f: Q \mapsto G$ must have f(1) = 0 and $f(-1) = \overline{0}$, then we could choose, for instance, f(i) = a and f(j) = b, then all the other mappings must follow according to the multiplication and additive tables: in this case it must be $f(-i) = \overline{a}$ and so on.

6. Using isomorphisms we can classify groups, that is provide "standard copies" of groups with given order. For instance any group of order a prime number p is isomorphic to $(\mathbb{Z}_p, +)$, while other are isomorphic to Klein's 4-group, the Quaternion group, and so on. According to Cayley's Theorem any group G is isomorphic to a subgroup of a symmetric group.

Classify the multiplicative group $G = (\mathbb{Z}_8^{\times}, \cdot)$, that is find

- (a) the order of G,
- (b) the multiplication table of G and the order of its elements, and
- (c) a known (or standard) isomorphic copy of G with an isomorphism.
- **Solution** \mathbb{Z}_8^{\times} is the group of units in \mathbb{Z}_8 , that is the congruence classes $[a]_8 = \bar{a}$ with representative a coprime with 8. Then $\mathbb{Z}_8^{\times} = \{\bar{1}, \bar{3}, \bar{5}, \bar{7}\}.$
 - (a) The order of G is 4.
 - (b) Because G is abelian, only the upper-triangular part of the multiplication table must be reported

	ī	$\bar{3}$	$\overline{5}$	$\overline{7}$	
ī	ī	$\bar{3}$	$\overline{5}$	$\overline{7}$	
$\overline{3}$		ī	$\overline{7}$	$\overline{5}$	Note: $\bar{3}^2 = \bar{5}^2 = \bar{7}^2 = \bar{1}$
$\overline{5}$			ī	$\bar{3}$	
$\overline{7}$				ī	

in particular there isn't any element with order 4 and G is not cyclic.

(c) The only (up to isomorphisms) non-cyclic group of order 4 is Klein 4-group (see exercise 3). Therefore G is isomorphic to K and an isomorphism $f: K \to G$ is given by $f(1) = \overline{1}, f(i) = \overline{3}, f(j) = \overline{5}$, and consequently $f(k) = f(ij) = f(i)f(j) = \overline{3}\overline{5} = \overline{7}$.