Math 310-010 - Spring 2014 - Test 2- Part 1

Instructor: Dr. Francesco Strazzullo
My Name KEY
Instructions. SHOW YOUR WORK neatly, please. Each exercise is worth 10 points. If using a result from the book, make a reference to it (using the page number as well).

1. Provide a non-trivial partition \mathcal{P} of the set $S=\{1, a, 3, b, \pi\}$ and show that \mathcal{P} is a partition of S.

wind $X \neq y \Rightarrow X \cap Y=\phi^{\prime \prime} ;$ and ITI $S=U X$,

2. Form the product table of the set of permutations $S=\{(123),(12),(14)\}$ with respect to the composition of functions in S_{4}.

$$
\begin{aligned}
& (123)(123)=(132) ;(123)(14)=(1423) ;(14)(123)=(1234) \\
& (123)(12)=(13) ;(12)(123)=(23) ;(12)(144)=(142) ; \\
& (14)(12)=(124) ;(12)(12)=(1) ;(14)(14)=(1) \\
& (12)(12)(14)(123) \\
& (14)(124)(123)(1234) \\
& (123)(13)(1423)(132)
\end{aligned}
$$

3. Check if the relation defined in \mathbb{R}^{2} by

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1}+y_{1}=x_{2}+y_{2}
$$

is an equivalence. If \sim is an equivalence then represent graphically four distinct equivalence classes $[(x, y)]_{\sim}$.
i) Reflex ne: $x+y=x+y \Rightarrow(x, y) \sim(x, y)$
ii) Syarme Thine $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Rightarrow x_{1}+y_{1}=x_{2}+y_{2} \Rightarrow$

$$
\Rightarrow x_{2}+y_{2}=x_{1}+y_{1} \Rightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right)
$$

iii) inansinve: $\left.\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Rightarrow x_{1}+y_{1}=x_{2}+y_{2}\right]$
$\Rightarrow x_{1}+y_{1}=x_{2}+y_{2}=x_{3}+y_{3} \Rightarrow x_{1}+y_{1}=x_{3}+y_{3} \Rightarrow\left(x_{1}, y_{1}\right) \sim\left(x_{3}, y_{3}\right)$
iv) Equivalences classes: say $X_{1}+Y_{1}=c_{1}$ then " $(x, y) \sim\left(x_{1}, y_{1}\right) \Delta A \quad x+y=c_{1}^{\prime}$ Thereatare $\left[\left(x_{\perp}, y_{1}\right)\right]_{N}=\left\{(x, y) \in \mathbb{R}^{2} \mid x+y=c_{1}\right\}=$ "STRACUNT CINE Note that $\left[\left(x_{i}, y_{1}\right)\right]_{N}$ and $\left[\left(x_{2}, y_{2}\right)\right]_{N}$ Ane all panallez to The main anti-diabonal $[(0,0)]_{N}$ with equation $y=-x$.
A: $[(0,0)]_{N}: y=-x$
$B:[(0,1)]_{V} ; \quad y=-x+(0+1)$ $=-x+1$
$c:[(2,1)]_{i}=\begin{aligned} & y=-x+(2+1) \\ & =-x+z\end{aligned}$ $=-x+3$
D: $\begin{aligned}(-2,-3)]_{i}= & y=-x+(-2+3) \\ & =-x-5\end{aligned}$

Math 310-010 - Spring 2014 - Test 2 - Part 2

Instructor: Dr. Francesco Strazzullo
My Name \qquad

I certify that I did not receive third party help in completing this test. (sign) \qquad

Instructions. SHOW YOUR WORK neatly, please. Each exercise is worth 10 points. If using a result from the book, make a reference to it (using the page number as well).

1. Let $\mathbb{Z}^{*}=\mathbb{Z}-\{0\}$ and define \mathbb{Q} to be the quotient set of $\mathbb{Z} \times \mathbb{Z}^{*}$ by the following equivalence relation

$$
\left(a_{1}, b_{1}\right) \sim\left(a_{2}, b_{2}\right) \Leftrightarrow a_{1} b_{2}=b_{1} a_{2}
$$

The elements of \mathbb{Q} (i.e. the rational numbers) are equivalence classes $[(a, b)]_{\sim}$. These are usually denoted by $\frac{a}{b}$ and one calls (a, b) a representative of the rational number $\frac{a}{b}$. Moreover, $\frac{a}{b}$ can always be written in lowest terms, that is a and b are coprime, or relatively prime. For instance $(1,2)$ and $(-3,-6)$ are distinct representatives of the same rational number $\frac{1}{2}$.
Check if the function $f: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$

$$
f\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}\right)=\frac{a_{1}+a_{2}}{b_{1}+b_{2}},
$$

is well defined, that is check if $f\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}\right)$ depends on the representatives.
2. Check if the relation defined in \mathbb{R}^{2} by

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+y_{2}^{2},
$$

is an equivalence. If \sim is an equivalence then represent graphically four distinct equivalence classes $[(x, y)]_{\sim}$.
3. Consider the function $f: \mathbb{Z} \rightarrow \mathbb{Z}_{15}$ defined by

$$
f(x)=[21 x]_{15}
$$

Describe the equivalence relation \sim_{f}, the quotient set $\frac{\mathbb{Z}}{f}$, and a bijective map between $\frac{\mathbb{Z}}{f}$ and $f(\mathbb{Z})$.
4. Write a disjoint-cycles-decomposition of the permutation

$$
\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 8 & 3 & 5 & 7 & 4 & 1 & 6
\end{array}\right)
$$

then compose the multiplication table of these cycles.

MAT 3 LO-EXAM 2 PART 2 -SPRINW 2014 KEY

1) It is enough to providos a "nobatinos example". To SHOW THAT:

$$
\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \nRightarrow f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)
$$

$\operatorname{Hare}\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1}=x_{2}, y_{1}=y_{2} \Leftrightarrow$
\& $\frac{a_{1}}{b_{1}}=x_{1}=x_{2}=\frac{c_{1}}{d_{1}}$ Aab $\frac{a_{2}}{b_{2}}=y_{1}=y_{2}=\frac{c_{2}}{d_{2}}$.
COLNTER-EXAMPLE: $\frac{1}{2}=\frac{3}{6}=x_{1}, \frac{2}{3}=\frac{4}{6}=y_{1}$

$$
\left.\begin{array}{l}
f\left(x_{1}, y_{1}\right)=f\left(\frac{1}{2}, \frac{2}{3}\right)=\frac{1+2}{2+3}=\frac{3}{5} \\
f\left(x_{2}, y_{2}\right)=f\left(\frac{3}{6}, \frac{4}{6}\right)=\frac{3+4}{6+6}=\frac{7}{12}
\end{array}\right] \text { BUT } \frac{3}{5} \neq \frac{7}{12}
$$

Noté:

$$
\left.\begin{array}{l}
f\left(\frac{1}{2}, \frac{3}{6}\right)=\frac{1+3}{2+6}=\frac{4}{8}=\frac{1}{2} \\
f\left(\frac{5}{10}, \frac{21}{42}\right)=\frac{5+21}{10+42}=\frac{26}{52}=\frac{1}{2}
\end{array}\right] /
$$

2) RIILEXIVITY: $x^{2}+y^{2}=x^{2}+y^{2} \Rightarrow(x, y) \sim(x, y)$

SyMm ITRy: $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Rightarrow x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+y_{2}^{2} \Rightarrow$

$$
\Rightarrow x_{2}^{2}+y_{2}^{2}=x_{1}^{2}+y_{1}^{2} \Rightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right)
$$

$$
\left.\begin{array}{l}
\text { TRANSITIVATY: } \frac{c_{1}}{c_{2}} \\
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Rightarrow \sqrt{x_{1}^{2}+y_{1}^{2}}=x_{2}^{2}+y_{2}^{2} \\
\left(x_{2}, y_{2}\right) \sim\left(x_{3}, y_{3}\right) \Rightarrow \frac{x_{2}^{2}+y_{2}^{2}}{c_{2}}=\underbrace{x_{3}^{2}+y_{3}^{2}}_{c_{3}}
\end{array}\right] \Rightarrow c_{1}=c_{2}=c_{3} \Rightarrow \text { OVER }
$$

$$
\text { (2. } \Rightarrow c_{1}=c_{3} \Rightarrow x_{1}^{2}+y_{1}^{2}=x_{3}^{2}+y_{3}^{2} \Rightarrow\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{3}\right)
$$

SAY $\left(x_{1}, y_{1}\right)$ is A FIXED PAIR WITH $x_{1}^{2}+y_{1}^{2}=C$ (CONSTANT)
TMEN:

$$
\begin{aligned}
{\left[\left(x_{1}, y,\right)\right]_{N}=} & \left\{(x, y) \in \mathbb{R} \mid x^{2}+y^{2}=c\right\}= \\
= & \text { "CRCLE WITH CONTER THÉ ORIGLN (EENTRLL CIRELINB } \\
& \text { AND RADUS } \sqrt{c} "
\end{aligned}
$$

[aOTE, ER. OF CIRCLE win conter (h, k) AMD RADIUS R :

$$
(x-h)^{2}+(y-k)^{2}=R^{2}
$$

$[(\theta, 1)]_{N}=$ "CEATRALCIRCLE with RADOUS $\sqrt{\theta^{2}+l^{2}}=1$
$[(4,0)]_{N}=$ "Central cirele with Rand $\sqrt{4^{2}+0^{2}}=4$
$[(-3,4)]_{N}=$ "Centand CIRCLE with radus $\sqrt{(-3)^{2}+4^{2}}=5$
$[(-3,0)]_{N}=$ "centaal circle with Radus $\sqrt{(-3)^{2}+0^{2}}=3$

$$
\begin{aligned}
& \text { TKAT } f 18 \text { WELLL DSFINBJD! }) \\
& \left.x_{1}\right]_{15}=\left[21 x_{2}\right]_{15}\langle A D \\
& =3.5 \cdot 9 \Leftrightarrow\binom{\text { CANCELLATION }}{\text { LAWIN } \mathbb{Z}}
\end{aligned}
$$

$\Leftrightarrow \Rightarrow 7\left(x_{1}-x_{2}\right)=59 \Leftrightarrow 7 x_{1}-7 x_{2}=59 \Leftrightarrow\left[7 x_{1}\right]_{5}=\left[7 x_{2}\right]_{5}$

$\left\langle\neq\left[x_{1}\right]_{5}=\left[x_{2}\right]_{5} \quad\right.$ TMEREFORE n_{f} is \equiv_{5} (CONPROENLE
$\operatorname{MOD} 5$) and $\mathbb{Z} / f=\mathbb{Z}_{/ \bar{E}_{5}}=\mathbb{Z}_{5}$. WE DÜSRRIBÚD N_{f} and \mathbb{Z} / f.
A BISECTIVE MAP DEFINED iN 2.2.7(pg68) is: $\bar{f}: \mathbb{Z}_{f} \rightarrow f(\mathbb{Z})$
SUCH That

$$
\bar{f}\left([x]_{N j}\right)=f(x) \text {. in This LASs: } \bar{f}^{\prime} \mathbb{Z}_{5} \rightarrow f(\mathbb{Z})
$$

$4 \longrightarrow$

$$
\left.f(T)=\left\{[0]_{15}\right)[3]_{(5)}[6]_{(5)}[9]_{15},[12]_{15}\right\}
$$

4) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 67 & 8 \\ 2 & 8 & 3 & 5 & 7 & 4 & 1 \\ 6\end{array}\right)=(1286457)$ oany oas 7-CXLL THE MULTIPLCATION TABLE IS JUST $(1286457)(128645 \%)=$ $=(1847265)$

$$
\begin{array}{rl}
* & *\left([0]_{5}\right)=[0]_{15} ; f\left([1]_{5}\right)=[21]_{15}=[\sigma]_{15} ; \bar{f}\left([2]_{5}\right)=[42]_{15}=[12]_{15} \\
& f\left([3]_{5}\right)=[63]_{15}=[3]_{15} ; f\left([4]_{5}\right)=[84]_{15}=[9]_{15} .
\end{array}
$$

