Math 310-010 - Spring 2014 - Test 2 - Part 1

Instructor: Dr. Francesco Strazzullo

My Name KEY

Instructions. SHOW YOUR WORK neatly, please. Each exercise is worth 10 points. If using a result from the book, make a reference to it (using the page number as well).

- 1. Provide a non-trivial partition \mathcal{P} of the set $S = \{1, a, 3, b, \pi\}$ and show that \mathcal{P} is a partition of S. \mathcal{P} IS A PARTITION OF S IF I) " $X \in \mathcal{P} = \mathcal{P} \times \subseteq S''$; II)" $X, Y \in \mathcal{P}$ WITH $X \neq Y = \mathcal{P} \times \Lambda Y = \mathscr{O}$ "; AND II) $S = U \times$. FOR EXAMPLE $\mathcal{P} = \{1, 3, \pi\}, \{2, 1, 5\}\}$ IS A PARTITION WITH ONLY TWO ELEMENTS $X = \{1, 3, \pi\}$ And $Y = \{2, 1, 5\}$ THAT SATISFY I, II, $A = \mathcal{N}$.
- 2. Form the product table of the set of permutations $S = \{(123), (12), (14)\}$ with respect to the composition of functions in S_4 .

$$(123)(123) = (132) ; (123)(14) = (1423); (14)(123) = (1234) (123)(12) = (13) ; (12)(123) = (23); (12)(14) = (142); (14)(12) = (124); (12)(12) = (1); (14)(14) = (1) (14)(12) = (124); (12)(12) = (1); (14)(14) = (1)$$

$$(12) (14) (123) (12) (1) (142) (23) (14) (124) (1) (1234) (123) (13) (1423) (132) (13) (1423) (132)$$

3. Check if the relation defined in \mathbb{R}^2 by

$$(x_1,y_1) \sim (x_2,y_2) \Leftrightarrow x_1 + y_1 = x_2 + y_2,$$

is an equivalence. If \sim is an equivalence then represent graphically four distinct equivalence classes $[(x, y)]_{\sim}$.

i) REFLEXANT:
$$X+Y = X+Y = D(X,Y) \sim (X,Y)$$

ii) SYAMAGTANE: $(X_{1},Y_{1}) \sim (X_{2},Y_{2}) \Rightarrow X_{1}+Y_{1} = X_{2}+Y_{2} \Rightarrow$
 $\Rightarrow X_{2}+Y_{2} = X_{1}+Y_{1} \Rightarrow (X_{2},Y_{2}) \rightarrow (X_{1},Y_{1})$
iii) TAANSIMUE: $(X_{1},Y_{1}) \sim (X_{2},Y_{2}) \Rightarrow X_{1}+Y_{1} = X_{2}+Y_{2}$
 $(X_{2},Y_{2}) \sim (X_{3},Y_{3}) \Rightarrow X_{2}+Y_{2} = X_{3}+Y_{3}$
 $\Rightarrow X_{1}+Y_{1} = X_{2}+Y_{2} = X_{3}+Y_{3} \Rightarrow X_{1}+Y_{1} = X_{3}+Y_{3} \Rightarrow (X_{1},Y_{1}) \sim (X_{3},Y_{3})$
 $\Rightarrow X_{1}+Y_{1} = X_{2}+Y_{2} = X_{3}+Y_{3} \Rightarrow X_{1}+Y_{1} = X_{3}+Y_{3} \Rightarrow (X_{1},Y_{1}) \sim (X_{3},Y_{3})$
iv) EQUIVALENCE CLASSES: SAY $X_{1}+Y_{1} = C_{1}$ THEN
 $(X_{1},Y) \sim (X_{1},Y_{1}) \Delta \Rightarrow X+Y = C_{1}^{"}$ THENSTONE
 $E(X_{1},Y_{2})]_{N} = \sum (X_{1},Y) \in \mathbb{R}^{2} | X+Y=C_{1}] = SMALGMT LINE
 $F(X_{1},Y) \sim (X_{1},Y_{1}) \Delta \Rightarrow X+Y = C_{1}^{"}$ THENSTONE
 $E(X_{1},Y_{2})]_{N} = \sum (X_{1},Y) \in \mathbb{R}^{2} | X+Y=C_{1}] = SMALGMT LINE
 $F(X_{1},Y) \sim (X_{1},Y_{1}) \Delta \Rightarrow X+Y = C_{1}^{"}$ THENSTONE
 $E(X_{1},Y_{2})]_{N} = \sum (X_{1},Y) \in \mathbb{R}^{2} | X+Y=C_{1}] = SMALGMT LINE
 $F(X_{1},Y) \sim (X_{1},Y_{1}) \Delta \Rightarrow X+Y = C_{1}^{"}$ THENSTONE
 $F(X_{1},Y) = X_{1} = \sum (X_{1},Y) \in \mathbb{R}^{2} | X+Y=C_{1}] = SMALGMT LINE
 $F(X_{1},Y) = X_{1} = \sum (X_{1},Y) = X_{1} = X_{1} = X_{2} = X_{2$$$$$

Math 310-010 - Spring 2014 - Test 2 - Part 2

Instructor: Dr. Francesco Strazzullo

My Name_____

I certify that I did not receive third party help in completing this test. (sign)____

Instructions. SHOW YOUR WORK neatly, please. Each exercise is worth 10 points. If using a result from the book, make a reference to it (using the page number as well).

1. Let $\mathbb{Z}^* = \mathbb{Z} - \{0\}$ and define \mathbb{Q} to be the quotient set of $\mathbb{Z} \times \mathbb{Z}^*$ by the following equivalence relation

$$(a_1, b_1) \sim (a_2, b_2) \Leftrightarrow a_1 b_2 = b_1 a_2.$$

The elements of \mathbb{Q} (i.e. the *rational numbers*) are equivalence classes $[(a, b)]_{\sim}$. These are usually denoted by $\frac{a}{b}$ and one calls (a, b) a representative of the rational number $\frac{a}{b}$. Moreover, $\frac{a}{b}$ can always be written in lowest terms, that is a and b are coprime, or relatively prime. For instance (1, 2) and (-3, -6) are distinct representatives of the same rational number $\frac{1}{2}$. Check if the function $f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$

$$f\left(\frac{a_1}{b_1}, \frac{a_2}{b_2}\right) = \frac{a_1 + a_2}{b_1 + b_2}$$

is well defined, that is check if $f\left(\frac{a_1}{b_1}, \frac{a_2}{b_2}\right)$ depends on the representatives.

2. Check if the relation defined in \mathbb{R}^2 by

$$(x_1, y_1) \sim (x_2, y_2) \Leftrightarrow x_1^2 + y_1^2 = x_2^2 + y_2^2,$$

is an equivalence. If ~ is an equivalence then represent graphically four distinct equivalence classes $[(x, y)]_{\sim}$.

3. Consider the function $f : \mathbb{Z} \to \mathbb{Z}_{15}$ defined by

$$f(x) = [21x]_{15}$$

Describe the equivalence relation \sim_f , the quotient set $\frac{\mathbb{Z}}{f}$, and a bijective map between $\frac{\mathbb{Z}}{f}$ and $f(\mathbb{Z})$.

4. Write a disjoint-cycles-decomposition of the permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 8 & 3 & 5 & 7 & 4 & 1 & 6 \end{pmatrix},$$

then compose the multiplication table of these cycles.

MAT 320 - EXAM2 PART 2 - SPRING 2014 VEY IT IS ENOUGH TO PROVIDE A "NEGATIVE EXAMPLE". TO 1) SHOW THAT : $(X_1, Y_1) = (X_2, Y_2) \neq f(X_1, Y_1) = f(X_2, Y_2)$ HORE $(X_1, Y_1) = (X_2, Y_2)$ AD $X_1 = X_2, Y_1 = Y_2$ AD COUNTER-EXAMPLE: $\frac{1}{2} = \frac{3}{5} = x_1$, $\frac{2}{5} = \frac{4}{5} = \frac{7}{1}$ $f(x_{1}, Y_{1}) = f(\frac{1}{2}, \frac{2}{3}) = \frac{1+2}{2+3} = \frac{3}{5}$ $f(x_{2}, Y_{2}) = f(\frac{3}{6}, \frac{4}{6}) = \frac{3+4}{6+6} = \frac{7}{12}$ $BUT = \frac{3}{5} + \frac{7}{12}$ NoTE: $f(\frac{1}{2}, \frac{3}{6}) = \frac{1+3}{2+6} = \frac{4}{8} = \frac{1}{2}$ $f(\frac{5}{10}, \frac{21}{42}) = \frac{5+21}{10+42} = \frac{26}{52} = \frac{1}{2}$ IT WORKS! 2) RIFLEXIVITY: $x^2 + y^2 = x^2 + y^2 = D(X, Y) \sim (X, Y)$ SYMMETRY: (X1, X) ~ (X2, Y2) = X2 + Y2 = X2 + Y2 = D $\Rightarrow x_2^2 + y_2^2 = x_1^2 + y_2^2 \Rightarrow (x_2, y_2) \sim (x_1, y_1)$ $\begin{array}{cccc} \text{TRAOUSITIVATY:} & c_{1} & c_{2} \\ (X_{1},Y_{1}) & & & & & \\ & & & \\ (X_{2},Y_{2}) & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & &$ TRADISITIVATY:

3)
$$f: \mathbb{Z} \to \mathbb{Z}_{15}$$
, $f(x) = \mathbb{E}_{21\times 1}_{15}$ (WE AND NOT ASHED TO CHECK
 THME f is when $b \in Finis D_{1}$)
 $x_{1} \xrightarrow{y} x_{2} \notin D$ $f(x_{1}) = f(x_{2}) \notin D$ $[2(x_{1}]_{15} = [2(x_{2}]_{15} \# D)]$
 $4D = 2(x_{1} - 21x_{2} = 159 \# D) = 3 \cdot 7(x_{1} - x_{2}) = 3 \cdot 5 \cdot 9 \# D (CAPUEFLATION)$
 $4D = 2(x_{1} - x_{2}) = 59 \# D = 7x_{1} - 7x_{2} = 59 \# D [7x_{1}]_{5} = [7x_{2}]_{5}$
 $4D = 7(x_{1} - x_{2}) = 59 \# D = 7x_{1} - 7x_{2} = 59 \# D [7x_{1}]_{5} = [7x_{2}]_{5}$
 $4D = 2(x_{1} - x_{2}) = 59 \# D = 7x_{1} - 7x_{2} = 59 \# D [7x_{1}]_{5} = [7x_{2}]_{5}$
 $4D = 2(x_{1} - x_{2}) = 59 \# D = 7x_{1} - 7x_{2} = 59 \# D [7x_{1}]_{5} = [7x_{2}]_{5}$
 $4D = 2(x_{1} - x_{2}) = 59 \# D = 7x_{1} - 7x_{2} = 59 \# D [7x_{1}]_{5} = [7x_{2}]_{5}$
 $4D = 2(x_{1} - x_{2}) = 59 \# D = 7x_{1} - 7x_{2} = 59 \# D [7x_{1}]_{5} = [7x_{2}]_{5}$
 $4D = 2(x_{1} - x_{2}) = 59 \# D = 7x_{1} - 7x_{2} = 59 \# D [7x_{1}]_{5} = [7x_{2}]_{5}$
 $4D = 2(x_{1} - x_{2}) = 59 \# D = 7x_{1} - 7x_{2} = 59 \# D [7x_{1}]_{5} = [7x_{2}]_{5}$
 $4D = 2(x_{1} - x_{2}) = 59 \# D = 7x_{1} - 7x_{2} = 59 \# D [7x_{1}]_{5} = [7x_{2}]_{5}$
 $4D = [x_{1}]_{5} = [x_{2}]_{5} = T \# D P = 26 \text{ for } T = 7x_{1} + 7x_{2} = 59 \# D [7x_{1}]_{5} = [7x_{2}]_{5}$
 $4D = [x_{1}]_{5} = [x_{2}]_{5} = T \# D = 7x_{2} + 7x_{2} = 59 \# D [7x_{1}]_{5} = 12]_{7}$
 $4D = [x_{1}]_{5} = [x_{2}]_{5} = [x_{2}]_{5} = [x_{2}]_{5} = [x_{2}]_{5} = [x_{2}]_{5} = [x_{2}]_{5}$
 $4D = [x_{1}]_{5} = [x_{2}]_{5} = [x_{2}]$

-----(

(

5