Math 310-010 - Spring 2016 - Test 1 - Part 1/2 -SOLUTIONS

Instructor: Dr. Francesco Strazzullo

My Name_____

I certify that I did not receive third party help in completing this test. (sign)_

Instructions. SHOW YOUR WORK neatly, please. Each exercise is worth 10 points. If using a result from the book, make a reference to it (using the page number as well). **Note:**When possible, the notation

 $\bar{a} = [a]_m$ is used.

1. Use the Euclidean algorithm to compute the greatest common divisor of 1739 and 9923.

Solution

9923	=	$5 \cdot 1739 + 1228$	99	=	$12 \cdot 8 + 3$
1739	=	$1\cdot 1228+511$	8	=	$2 \cdot 3 + 2$
1228	=	$2\cdot 511 + 206$	3	=	$1 \cdot 2 + 1$
511	=	$2 \cdot 206 + 99$	2	=	$2 \cdot 1 + 0$
206	=	$2 \cdot 99 + 8$	gcd(1739,9923)	=	1

2. Compute the addition (Cayley) table of \mathbb{Z}_6 .

Solution The operation is commutative, therefore we don't need to write the lower triangular part of the table.

$(\mathbb{Z}_6,+)$	$\bar{0}$	ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\overline{5}$
ō	$\bar{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$
Ī		$\overline{2}$	$\bar{3}$	$\bar{4}$	$\overline{5}$	$\bar{0}$
$\overline{2}$			4	$\overline{5}$	$\bar{0}$	Ī
$\bar{3}$				$\bar{0}$	ī	$\overline{2}$
4					$\overline{2}$	$\bar{3}$
5						$\bar{4}$

- 3. Compute the multiplication (Cayley) table of \mathbb{Z}_{12}^* (called *set of units U*(12)).
- **Solution** The operation is commutative, therefore we don't need to write the lower triangular part of the table. Moreover, $\bar{a} \in \mathbb{Z}_m^*$ if and only if gcd (a, m) = 1, therefore $\mathbb{Z}_{12}^* = \{\bar{1}, \bar{5}, \bar{7}, \bar{11}\}$.

$(\mathbb{Z}_{12}^*,\cdot)$	ī	$\overline{5}$	$\overline{7}$	11
Ī	ī	$\overline{5}$	$\overline{7}$	11
$\overline{5}$		ī	11	$\overline{7}$
$\overline{7}$			ī	$\overline{5}$
11				ī

4. Find, if possible, the multiplicative inverse of the following congruence classes. You get **5** extra points if you express the inverse as a power of the given classes.

(a) $[5]_{11}$

(b) $[3]_{17}$

Solution One can implement the C++ code

```
int power = a, n=0;
do
{
    power = (a*power)%m;
    n=n+1;
}
while (power != 1);
```

in order to find the exponent n such that $([a]_m)^{n+1} = [1]_m$, that is $([a]_m)^n = ([a]_m)^{-1}$.

- (a) $([5]_{11})^{-1} = ([5]_{11})^4 = [9]_{11}.$
- (b) $([3]_{17})^{-1} = ([3]_{17})^{15} = [6]_{17}.$

Only for Math 310-02H

- 5. Prove that for all $n \in \mathbb{Z}$ the set $n\mathbb{Z} = \{na \in \mathbb{Z} \mid a \in \mathbb{Z}\}$ is a **subgroup** of $(\mathbb{Z}, +)$, by proving the following.
 - (a) $n\mathbb{Z} = (-n)\mathbb{Z};$
 - (b) $n\mathbb{Z}$ is closed under sum, that is if $x, y \in n\mathbb{Z}$ then $x + y \in n\mathbb{Z}$;
 - (c) $0 \in n\mathbb{Z};$
 - (d) if $x \in n\mathbb{Z}$ then $-x \in n\mathbb{Z}$.

Solution Let's fix an element $n \in \mathbb{Z}$.

(a) $n\mathbb{Z} = (-n)\mathbb{Z}$, because x is an element of $n\mathbb{Z}$ if and only if x is and element of $(-n)\mathbb{Z}$. Indeed:

$$x \in n\mathbb{Z} \Leftrightarrow x = nq \Leftrightarrow x = (-n)(-q) \Leftrightarrow x \in (-n)\mathbb{Z}$$

(b) $n\mathbb{Z}$ is closed under sum, that is if $x, y \in n\mathbb{Z}$ then $x + y \in n\mathbb{Z}$:

$$x, y \in n\mathbb{Z} \Leftrightarrow x = nq, \quad y = np \Leftrightarrow x + y = nq + np = n(q + p) \Leftrightarrow x + y \in n\mathbb{Z}$$

- (c) $0 \in n\mathbb{Z}$ because $0 = n \cdot 0$.
- (d) if $x \in n\mathbb{Z}$ then $-x \in n\mathbb{Z}$:

$$x \in n\mathbb{Z} \Rightarrow x = nq \Rightarrow -x = -nq = n(-q) \Rightarrow -x \in n\mathbb{Z}$$

Math 310-010 - Spring 2016 - Test 1 - Part 2/2

Instructor: Dr. Francesco Strazzullo

My Name_

Instructions. SHOW YOUR WORK neatly, please. Each exercise is worth 10 points. If using a result from the book, make a reference to it (using the page number as well).

1. Let m be a natural number, \equiv_m be the congruence modulo m, and $[a]_m$ be the congruence class of an integer a with respect to m. By the Euclidean Division Algorithm, for every $a \in \mathbb{Z}$ there is a unique $r \in \mathbb{Z}$ such that $0 \leq r \leq m-1$ and $[a]_m = [r]_m$: accordingly, $[r]_m$ is called the standard form of $[a]_m$. For instance, the standard form of $[7]_3$ is $[1]_3$. Compute the standard form of $2[3]_{15} + [5]_{15} - 2([7]_{15} \cdot [8]_{15})$.

Solution $2 \cdot \overline{3} + \overline{5} - 2(\overline{7} \cdot \overline{8}) = \overline{6} + \overline{5} - 2 \cdot \overline{56} = \overline{11} - 2 \cdot \overline{11} = -\overline{11} = \overline{4}$.

2. Use mathematical induction to prove that for every natural number n it is true that

$$\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$$

Solution $P(n): 1^2 + 2^2 + \ldots + n^2 = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$

Base P(1): $LHS = 1^2$ and $RHS = \frac{1(1+1)(2+1)}{6} = 1 = LHS \checkmark$.

Step Assume P(n) true, that is the Hypothesis of Induction (HI): $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$. Prove the formula true for n+1: $\sum_{i=1}^{n+1} i^2 = \frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}$.

$$\begin{split} RHS &= \frac{(n+1)((n+1)+1)(2(n+1)+1)}{6} = \frac{(n+1)(n+2)(2n+3)}{6} \\ LHS &= \sum_{i=1}^{n+1} i^2 = \sum_{i=1}^n i^2 + (n+1)^2 \stackrel{HI}{=} \frac{n(n+1)(2n+1)}{6} + (n+1)^2 \\ &= (n+1)\frac{n(2n+1)+6(n+1)}{6} = (n+1)\frac{(2n^2+7n+6)}{6} \\ &= (n+1)\frac{(2n^2+4n+3n+6)}{6} = (n+1)\frac{(2n(n+2)+3(n+2))}{6} \\ &= (n+1)\frac{(n+2)(2n+3)}{6} = RHS\checkmark. \end{split}$$