Math 310-010 - Spring 2016 - Test 1 - Part $1 / 2$-SOLUTIONS

Instructor: Dr. Francesco Strazzullo
My Name \qquad

I certify that I did not receive third party help in completing this test. (sign) \qquad

Instructions. SHOW YOUR WORK neatly, please. Each exercise is worth 10 points. If using a result from the book, make a reference to it (using the page number as well). Note:When possible, the notation $\bar{a}=[a]_{m}$ is used.

1. Use the Euclidean algorithm to compute the greatest common divisor of 1739 and 9923.

Solution

$$
\left.\begin{aligned}
9923 & =5 \cdot 1739+1228 \\
1739 & =1 \cdot 1228+511 \\
1228 & =2 \cdot 511+206 \\
511 & =2 \cdot 206+99 \\
206 & =2 \cdot 99+8
\end{aligned} \right\rvert\, \begin{aligned}
99 & =12 \cdot 8+3 \\
8 & =2 \cdot 3+2 \\
3 & =1 \cdot 2+1 \\
2 & =2 \cdot 1+0 \\
\operatorname{gcd}(1739,9923) & =1
\end{aligned}
$$

2. Compute the addition (Cayley) table of \mathbb{Z}_{6}.

Solution The operation is commutative, therefore we don't need to write the lower triangular part of the table.

$\left(\mathbb{Z}_{6},+\right)$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$
$\overline{1}$		$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{0}$
$\overline{2}$			$\overline{4}$	$\overline{5}$	$\overline{0}$	$\overline{1}$
$\overline{3}$				$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{4}$					$\overline{2}$	$\overline{3}$
$\overline{5}$						$\overline{4}$

3. Compute the multiplication (Cayley) table of \mathbb{Z}_{12}^{*} (called set of units $U(12)$).

Solution The operation is commutative, therefore we don't need to write the lower triangular part of the table. Moreover, $\bar{a} \in \mathbb{Z}_{m}^{*}$ if and only if $\operatorname{gcd}(a, m)=1$, therefore $\mathbb{Z}_{12}^{*}=\{\overline{1}, \overline{5}, \overline{7}, \overline{1}\}$.

$\left(\mathbb{Z}_{12}^{*}, \cdot\right)$	$\overline{1}$	$\overline{5}$	$\overline{7}$	$\overline{11}$
$\overline{1}$	$\overline{1}$	$\overline{5}$	$\overline{7}$	$\overline{11}$
$\overline{5}$		$\overline{1}$	$\overline{1} \overline{1}$	$\overline{7}$
$\overline{7}$			$\overline{1}$	$\overline{5}$
$\overline{1} 1$				$\overline{1}$

4. Find, if possible, the multiplicative inverse of the following congruence classes. You get 5 extra points if you express the inverse as a power of the given classes.
(a) $[5]_{11}$
(b) $[3]_{17}$

Solution One can implement the $\mathrm{C}++$ code

```
int power = a, n=0;
do
{
    power = (a*power)%m;
    n=n+1;
}
while (power != 1);
```

in order to find the exponent n such that $\left([a]_{m}\right)^{n+1}=[1]_{m}$, that is $\left([a]_{m}\right)^{n}=\left([a]_{m}\right)^{-1}$.
(a) $\left([5]_{11}\right)^{-1}=\left([5]_{11}\right)^{4}=[9]_{11}$.
(b) $\left([3]_{17}\right)^{-1}=\left([3]_{17}\right)^{15}=[6]_{17}$.

Only for Math 310-02H

5. Prove that for all $n \in \mathbb{Z}$ the set $n \mathbb{Z}=\{n a \in \mathbb{Z} \mid a \in \mathbb{Z}\}$ is a subgroup of $(\mathbb{Z},+)$, by proving the following.
(a) $n \mathbb{Z}=(-n) \mathbb{Z}$;
(b) $n \mathbb{Z}$ is closed under sum, that is if $x, y \in n \mathbb{Z}$ then $x+y \in n \mathbb{Z}$;
(c) $0 \in n \mathbb{Z}$;
(d) if $x \in n \mathbb{Z}$ then $-x \in n \mathbb{Z}$.

Solution Let's fix an element $n \in \mathbb{Z}$.
(a) $n \mathbb{Z}=(-n) \mathbb{Z}$, because x is an element of $n \mathbb{Z}$ if and only if x is and element of $(-n) \mathbb{Z}$. Indeed:

$$
x \in n \mathbb{Z} \Leftrightarrow x=n q \Leftrightarrow x=(-n)(-q) \Leftrightarrow x \in(-n) \mathbb{Z}
$$

(b) $n \mathbb{Z}$ is closed under sum, that is if $x, y \in n \mathbb{Z}$ then $x+y \in n \mathbb{Z}$:

$$
x, y \in n \mathbb{Z} \Leftrightarrow x=n q, \quad y=n p \Leftrightarrow x+y=n q+n p=n(q+p) \Leftrightarrow x+y \in n \mathbb{Z}
$$

(c) $0 \in n \mathbb{Z}$ because $0=n \cdot 0$.
(d) if $x \in n \mathbb{Z}$ then $-x \in n \mathbb{Z}$:

$$
x \in n \mathbb{Z} \Rightarrow x=n q \Rightarrow-x=-n q=n(-q) \Rightarrow-x \in n \mathbb{Z}
$$

Math 310-010 - Spring 2016-Test 1 - Part 2/2

Instructor: Dr. Francesco Strazzullo
My Name
Instructions. SHOW YOUR WORK neatly, please. Each exercise is worth 10 points. If using a result from the book, make a reference to it (using the page number as well).

1. Let m be a natural number, \equiv_{m} be the congruence modulo m, and $[a]_{m}$ be the congruence class of an integer a with respect to m. By the Euclidean Division Algorithm, for every $a \in \mathbb{Z}$ there is a unique $r \in \mathbb{Z}$ such that $0 \leq r \leq m-1$ and $[a]_{m}=[r]_{m}$: accordingly, $[r]_{m}$ is called the standard form of $[a]_{m}$. For instance, the standard form of $[7]_{3}$ is $[1]_{3}$.
Compute the standard form of $2[3]_{15}+[5]_{15}-2\left([7]_{15} \cdot[8]_{15}\right)$.
Solution $2 \cdot \overline{3}+\overline{5}-2(\overline{7} \cdot \overline{8})=\overline{6}+\overline{5}-2 \cdot \overline{56}=\overline{11}-2 \cdot \overline{1}=-\overline{1}=\overline{4}$.
2. Use mathematical induction to prove that for every natural number n it is true that

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Solution $P(n): \quad 1^{2}+2^{2}+\ldots+n^{2}=\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
Base $P(1): L H S=1^{2}$ and $R H S=\frac{1(1+1)(2+1)}{6}=1=L H S \checkmark$.
Step Assume $P(n)$ true, that is the Hypothesis of Induction (HI): $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
Prove the formula true for $n+1: \sum_{i=1}^{n+1} i^{2}=\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}$.

$$
\begin{aligned}
\text { RHS } & =\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}=\frac{(n+1)(n+2)(2 n+3)}{6} \\
\text { LHS } & =\sum_{i=1}^{n+1} i^{2}=\sum_{i=1}^{n} i^{2}+(n+1)^{2} \stackrel{H I}{=} \frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =(n+1) \frac{n(2 n+1)+6(n+1)}{6}=(n+1) \frac{\left(2 n^{2}+7 n+6\right)}{6} \\
& =(n+1) \frac{\left(2 n^{2}+4 n+3 n+6\right)}{6}=(n+1) \frac{(2 n(n+2)+3(n+2))}{6} \\
& =(n+1) \frac{(n+2)(2 n+3)}{6}=\text { RHS } \checkmark
\end{aligned}
$$

