Name \qquad

Instructions. Complete the following exercises. Each exercise is worth 10 points. If you need to approximate then round to 3 decimal places, unless otherwise specified. This is an open book test. You can also use a graphing tool and/or a computer algebra system like GeoGebra. When solving a problem graphically sketch the graph you used.
SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).

1. Determine the average, amplitude, period, and phase shift of the following trigonometric model.

$$
f(x)=4-2 \tan \left(\frac{\pi}{5} x+\frac{3 \pi}{4}\right)=K+Q^{3} \tan (b x+e)
$$

If there is no phase shift, state "no phase shift". If there is a phase shift, state the direction of the phase shift and the number of units (as a positive number) the graph is shifted.

$$
\text { BASSPERLOD OF TANGENT }=\pi \Rightarrow P=\frac{\pi}{|b|}=\frac{\pi}{\pi / 5}=5
$$

$$
\text { PHASE SHIFT }=\left|\frac{c}{b}\right|=\frac{3 \pi / 4}{\pi / 5}=\frac{15}{4} \text { UNITS }
$$

$$
\frac{c}{b}>0 \Rightarrow \text { SHIFT TO LEFT, }
$$

2. Olivia just got a ride on ATL Ferris wheel. What are her linear and angular speeds if the diameter of the wheel is 215 feet and one "flight" is equal to FIVE revolutions, lasting about 20 minutes? Round your solutions to two decimal places.

$$
\begin{aligned}
& \text { five rivolututians in } 20 \text { mintús } \Rightarrow \theta=5 \cdot 2 \pi=10 \pi \text { in } T=20 \Rightarrow 0 \\
& \Rightarrow \begin{aligned}
\omega=\theta / T=\frac{10 \pi}{20} & =\frac{\pi}{2} \text { RAD/MIN ANnULAR SPeED } \\
& \approx 1.57
\end{aligned} \\
& V=r W=\frac{215}{2} \cdot \frac{\pi}{2}=\frac{215}{4} \pi \approx 168.86 \mathrm{FT} / \mathrm{MiN}
\end{aligned}
$$

Name \qquad

Instructions. Complete the following exercises. Each exercise is worth 10 points. If you need to approximate then round to 3 decimal places, unless otherwise specified. This is an open book test. You can also use a graphing tool and/or a computer algebra system like GeoGebra. When solving a problem graphically sketch the graph you used.
SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).

1. Determine the average, amplitude, period, and phase shift of the following trigonometric model.

$$
f(x)=4-2 \sin \left(\frac{\pi}{5} x+\frac{3 \pi}{4}\right)=K+a \sin (b x+c)
$$

If there is no phase shift, state "no phase shift". If there is a phase shift, state the direction of the phase shift and the number of units (as a positive number) the graph is shifted.

$$
\begin{aligned}
& A V B=K=K ; P E R G D=\frac{2 \pi}{1101}=\frac{2 \pi}{\pi / 5}=10 \\
& \text { APLITVDE }=|a|=2 \text {; } \\
& \text { MAS SHIFT }=\left|\frac{c}{b}\right|=\frac{3 \pi / 4}{\pi / 5}=\frac{15}{4}=3.75 \\
& \frac{e}{b}>0 \Rightarrow \text { SHIFT TO LEFT }
\end{aligned}
$$

2. Olivia just got a ride on ATL Ferris wheel. What are her linear and angular speeds if the diameter of the wheel is 210 feet and one "flight" is equal to four revolutions, lasting about 22 minutes? Round your solutions to two decimal places.
FouR REVOLTIOOS in 22 MIN $\Rightarrow \theta=4(2 \pi)=8 \pi$ IN $T=22 \Rightarrow$

$$
\begin{aligned}
& \Rightarrow \text { ANGULAR SPEED } \omega=\frac{\theta}{T}=\frac{8 \pi}{22}=\frac{4}{11} \pi \approx 1.14 \mathrm{RAD} / \mathrm{mIN} \\
& \text { LINEAR SPEED }=V=r \omega=\frac{210}{2} \cdot \frac{4}{11} \pi=\frac{420}{11} \pi \approx 119.95 \mathrm{FT} / \mathrm{MIN}
\end{aligned}
$$

3. Simplify the following expression, without approximating: $\sin ^{-1}\left(\sin \left(\frac{8}{7} \pi\right)\right)$

$$
\begin{aligned}
& \frac{8}{4} \pi>\frac{\pi}{2} \cdot \sin \left(\frac{8}{7} \pi\right)=\sin \left(\pi+\frac{\pi}{7}\right)=\sin \left(-\frac{\pi}{7}\right) \Rightarrow \\
& \Rightarrow \sin ^{-1}\left(\sin \left(\frac{8}{7} \pi\right)\right)=\sin ^{-1}\left(\sin \left(-\frac{\pi}{7}\right)\right)=-\frac{\pi}{7} \\
& \quad(\text { DO NT APPROX. TO }-4488)
\end{aligned}
$$

4. Solve the following logarithmic equation. If needed, round your answer to 4 decimal places.

$$
\begin{aligned}
& \log _{5}(x+3)+\log _{5}(2 x-3)=1 \Rightarrow \log _{5}((x+3)(2 x-3))=1 \stackrel{L^{2}}{\Rightarrow}=5^{\text {RMS }} \\
& \Rightarrow(x+3)(2 x-3)=5^{1} \Rightarrow 2 x^{2}+3 x-9=5 \Rightarrow \\
& \Rightarrow 2 x^{2}+3 x-14=0 \Rightarrow 2 x^{2}+7 x-4 x-14=0 \Rightarrow D \\
& \Rightarrow x(2 x+7)-2(2 x+7)=0 \Rightarrow(2 x+7)(x-2)=0<\begin{array}{l}
x=2 \\
x=-\frac{7}{2}
\end{array}
\end{aligned}
$$

Cheer:

- $x=2 \Rightarrow \log _{5}(2+3)$ AND $\log _{5}(2(2)-3)$ REDEFINED
- $x=-\frac{7}{2} \Rightarrow \log _{5}\left(-\frac{7}{2}+3\right)$ UNDEFINED \Rightarrow NOT A SOlution

Dally an es solution: $x=2$.
3. Simplify the following expression, without approximating: $\sin \theta)\left(\sin \left(\frac{8}{7} \pi\right)\right) \cos ^{-1}\left(\cos \left(\frac{9}{7} \pi\right)\right)$
$\frac{9}{7} \pi>\pi ; \quad \cos \left(\frac{9}{7} \pi\right)=\cos \left(\pi-\frac{2}{4} \pi\right)=\cos \left(\frac{5}{7} \pi\right)$., with $0 \leq \frac{5}{4} \pi \approx \pi$

$$
\begin{aligned}
& \text { THEN } \\
& \cos ^{-1}\left(\cos \left(\frac{9}{7} \pi\right)\right)=\cos ^{-1}\left(\cos \left(\frac{5}{7} \pi\right)\right)=\frac{5}{7} \pi \\
& \text { (DO NOT APPROX TO 2.24u) }
\end{aligned}
$$

4. Solve the following logarithmic equation. If needed, round your answer to 4 decimal places.

$$
\begin{aligned}
& \log _{4}(x-3)-\log _{4}(2 x+3)=2 \Rightarrow \log _{4}\left(\frac{x-3}{2 x+3}\right)=2 \stackrel{\text { Exp }}{\Rightarrow} 4^{\text {Lu }}=4^{\text {RuS }} \\
& \Rightarrow \frac{x-3}{2 x+3}=4^{2} \Rightarrow x-3=16(2 x+3) \Rightarrow \begin{array}{r}
x-3=32 x+48 \Rightarrow \Rightarrow \\
-x-48-x-48
\end{array} \\
& \Rightarrow 31 x=-51 \Rightarrow x=-\frac{51}{31}
\end{aligned}
$$

Check: $\log _{4}\left(-\frac{51}{31}-3\right)$ does nat exist $\Rightarrow x=-\frac{51}{31}$ EXTraneds. Solut. \Rightarrow NONE SOLUTION

Name
I certify that I did not receive third party help in completing this test (sign)

Instructions. Complete the following exercises. Each exercise is worth 10 points. If you need to approximate then round to 3 decimal places, unless otherwise specified. This is an open book test. You can also use a graphing tool and/or a computer algebra system like GeoGebra. When solving a problem graphically sketch the graph you used.
SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).
5. Shawn just hopped on the edge of a merry-go-round. What are his linear and angular speeds if the diameter of the merry-go-round is 8 meters and it takes 10 seconds to make 3 complete revolutions? Round the solutions to two decimal places.

$$
\begin{aligned}
& 10 \text { sECONDS FOR } 3 \text { Loons } \Rightarrow \text { WHEN } T=10, A=3(2 \pi)=6 \pi \\
& \Rightarrow \text { AOLULAR SPEED }=U=\frac{6 \pi}{10}=\frac{3}{5} \pi \approx 1.88 \quad R A D / S E C \text {. } \\
& \text { CINEAM SPEED }=V=Y \omega=\frac{8}{2} \cdot \frac{3}{5} \pi=\frac{12}{5} \pi N / 7.54 \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

6. Determine the amplitude, period, and phase shift of the following trigonometric equation.

$$
y=5 \cos \left(-\frac{\pi}{6} x+\frac{2 \pi}{7}\right)=a \cos (5 x+c)
$$

If there is no phase shift, state "no phase shift". If there is a phase shift, state the direction of the phase shift and the number of units (as a positive number) the graph is shifted.

$$
\begin{gathered}
\text { ARMPLITUDS }=|a|=5 ; \text { Permian }=\frac{2 \pi}{1 b 1}=\frac{2 \pi}{\pi / 6}=12 ; \\
\text { PMASE-SHIFT }=\left|\frac{e}{b}\right|=\frac{2 \pi / 7}{\pi / 6}=\frac{12}{7} \approx 1.714 \\
\frac{e}{b}<0 \Rightarrow \text { SHIFT To RIGHT. }
\end{gathered}
$$

7. Audrey is watching a space shuttle launch from an observation spot 9 miles away. Find the angle of elevation from hey to the space shuttle, which is at a height of 0.7 miles. Write your answer in degrees rounded to two decimal places.

$$
\left.\begin{array}{rl}
7 \quad \operatorname{Can} \alpha=\frac{O p p}{A D J}=\frac{\theta^{7}}{9}=D & \alpha=\operatorname{tom}^{-1}\left(-\frac{7}{9}\right) \\
& \sim 4.45^{\circ} \\
\sim 4.4
\end{array}\right\}
$$

8. Use trigonometric identities to simplify the expression and rewrite it in terms of one trigonometric function. $\sec ^{2}(\beta)+\csc ^{2}(\beta) \cos ^{2}(\beta)$

$$
\begin{aligned}
& \left(\frac{1}{\cos \beta}\right)^{2}+\left(\frac{\cos (\beta)}{\sin (\beta)}\right)^{2}=\frac{1}{\cos ^{2} \beta}+\frac{\cos ^{2} \beta}{\sin ^{2} \beta}=\frac{1}{\cos ^{2} \beta}+\frac{1-\sin ^{2} \beta}{\sin ^{2} \beta}= \\
& =\frac{1}{\cos ^{2} \beta}+\frac{1}{\sin ^{2} \beta}-1=\frac{\sin ^{2}+\cos ^{2} \beta}{\sin ^{2} \beta^{2} \cos ^{2} \beta}-1= \\
& =\frac{1}{(\sin \beta \cdot \cos \beta)^{2}}-1=\frac{1}{\left(\frac{1}{2} \sin (2 \beta)\right)^{2}}-1=\frac{4-\sin ^{2}(2 \beta)}{\sin ^{2}(2 \beta)} \\
& \text { NoT: OTAER SimPUFECTTDNS ARSPOSSBCLE }=\sin ^{2}(2 \beta)=1-\cos ^{2}(2 \beta)= \\
& =1-\left(2 \cos ^{2} \beta-1\right)^{2}=1-4 \cos ^{4} \beta+4 \cos ^{2} \beta-1=4-\cos ^{2} \beta\left(1-\cos ^{2} \beta\right) \text { THEN } \\
& \frac{1-\cos ^{2} \beta\left(1-\cos ^{2} \beta\right)}{\cos ^{2}\left(1-\cos ^{2} \beta\right)}
\end{aligned}
$$

9. (HONOR) In an effort to control vegetation overgrowth, 8 goats are released in an isolated area free of predators, but the limits of the area place a constraint on the population growth, whose limiting size is estimated to be 80 units. After 3 years, it is estimated that the goats' population has increased to 28. Assume logistic population growth, that is the population P after t years can be modeled by

$$
P(t)=\frac{80}{1+a e^{k t}}
$$

What will the population be at the beginning of the $29^{\text {th }}$ year? (Use the greatest integer function rounding rule).

$$
\begin{aligned}
& P(0)=8 \Rightarrow \frac{80}{1+a}=8 \Rightarrow 10=1+a \Rightarrow a=9 \\
& P(t)=\frac{80}{1+9 e^{\text {LE }}} \quad \text { The } \\
& 28=p(3)=\frac{80}{1+9 e^{k(3)}} \Rightarrow 1+9 e_{-1}^{3 k}=\frac{86}{887} \Rightarrow D_{-1}^{20}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow K=\frac{1}{3} \ln \left(\frac{13}{63}\right) \approx-.5261 \text {. Thad }
\end{aligned}
$$

$$
\begin{aligned}
& P(29)=\square_{79}^{\text {Lxx }} \text { Goats }
\end{aligned}
$$

9. In an effort to control vegetation overgrowth, 8 goats are released in an isolated area free of predators. After 3 years, it is estimated that the goats' population has increased to 28 . Assuming exponential population growth, what will the population be at the beginning of the $29^{\text {th }}$ year? (Use the greatest integer function round rule).

$$
\begin{aligned}
& \text { EXPO GRaNTH: } \left.P=P_{0} e^{k t}\right] \Rightarrow P=8 e^{k t} \\
& P_{0}=P(0)=8 \text { Gats } \\
& 28=P(3)=8 e^{k(3)}=8 e^{3 k} \Rightarrow e^{3 k}=\frac{28}{8}=\frac{7}{2}-1
\end{aligned}
$$

LN ват
$\Rightarrow \quad 3 K=\ln \left(\frac{7}{2}\right) \Rightarrow K=\frac{1}{3} \ln \left(\frac{7}{2}\right) \approx .41: 6$ Thea SIDes

$$
\begin{aligned}
& P=8 e^{\frac{1}{3} \ln \left(\frac{7}{2}\right) t}=8\left(\frac{7}{2}\right)^{\frac{1}{3} t} \sim \sim e^{.4176 t} \\
& P(29)=8 e^{\frac{29}{3} \ln \left(\frac{7}{2}\right)} \sim 1,453,497601 T s \sim 1,454,018 \text { bot is }
\end{aligned}
$$

