Test 3 Review: chap6-7

1. Perform the indicated operation by removing the parentheses and combining like terms.

$$
(6 x+1)-\left(-8 x^{2}-3 x\right)
$$

Answer: \qquad
2. Consider the following expression:

$$
5 x^{4}-6
$$

Step 1. Determine if the polynomial is a monomial, binomial, or trinomial.
A) Monomial
B) Binomial
C) Trinomial

Step 2. Determine the degree and the leading coefficient of the polynomial.

3. Simplify the expression using the properties of exponents. (Note that the answer should contain only positive exponents, and please be sure to expand any numerical portion of the answer.)

$$
x^{-3}
$$

Answer: \qquad
4. \quad Evaluate the given polynomial at $x=1$.

$$
3 x^{3}-3
$$

Answer: \qquad
5. Multiply the polynomials using the distributive property and combine like terms.

$$
(8 x-4)(x+1)
$$

Answer: \qquad
6. Find the product of the binomial factors using the appropriate special product (difference of two squares, square of a binomial sum, or square of a binomial difference).

$$
(x+7)^{2}
$$

Answer: \qquad
7. Multiply the polynomial by the monomial using the distributive property and/or the product rule of exponents.

$$
(-x)\left(-4 x^{2}+4 x-2\right)
$$

Answer: \qquad
8. Write 1.853×10^{-8} in decimal form.

Answer: \qquad
9. Simplify the expression using the properties of exponents. (Note that the answer should contain only positive exponents and please be sure to expand any numerical portion of the answer.)

$$
\left(\frac{2 m^{2} n^{-2}}{n^{3}}\right)^{3}
$$

Answer: \qquad
10. Divide the polynomial in the numerator by the monomial in the denominator.

$$
\frac{9 x^{4}-8 x^{2}+5}{x^{4}}
$$

Answer: \qquad
11. Completely factor the expression by grouping. If the polynomial cannot be factored, write "Not factorable by grouping". $2 b q-4 w z+q w-8 b z$

Answer: \qquad
12. Factor the trinomial given using the trial and error method. If the trinomial cannot be factored, write not factorable.

$$
x^{2}-11 x+24
$$

Answer: \qquad
13. Complete the square by adding the correct missing term on the left, then factor as indicated:

$$
x^{2}+\ldots+\frac{121}{4}=(\ldots)^{2}
$$

Answer: \qquad
14. Factor the given polynomial by finding the greatest common monomial factor (or the negative of the greatest common monomial factor) and rewrite the expression.

$$
5 x y^{3}-15 x y+25 x^{3} y
$$

Answer: \qquad
15. A square is 7 inches on each side. A small square, x inches on each side, is cut out from each corner of the original square.

Represent the area of the remaining portion of the square in the form of a polynomial function $A(x)$. Answer: \qquad

Answers

1. $8 x^{2}+9 x+1$
2. Step 1: Binomial

Step 2: Degree: 4, Leading Coefficient: 5
3. $\frac{1}{x^{3}}$
4. 0
5. $8 x^{2}+4 x-4$
6. $x^{2}+14 x+49$
7. $4 x^{3}-4 x^{2}+2 x$
8. 0.00000001853
9. $\frac{8 m^{6}}{n^{15}}$
10. $9-\frac{8}{x^{2}}+\frac{5}{x^{4}}$
11. $(2 b+w)(q-4 z)$
12. $(x-8)(x-3)$
13. $x^{2}+11 x+\frac{121}{4}=\left(x+\frac{11}{2}\right)^{2}$
14. $5 x y\left(y^{2}-3+5 x^{2}\right)$
15. $49-4 x^{2}$ sq. in.

