Instructor: Dr. Francesco Strazzullo

I certify that I did not receive third party help in completing this test (sign)

Instructions. Technology is allowed on this exam. Each problem is worth 10 points. If you use formulas or properties from our book, make a reference. When using technology describe which commands (or keys typed) you used or print out and attach your worksheet.

SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).

1. Write the **slope-intercept form** of the equation for the line that passes through the point (7,8) and has a slope of 2.

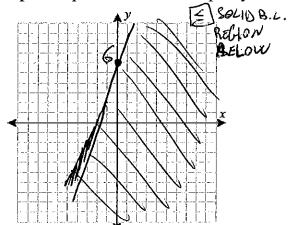
2. Consider the following equation of a line.

$$x + 7y = 5y - 5$$

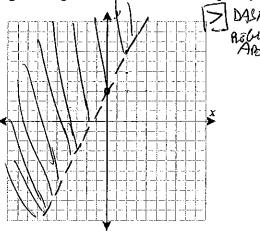
- a. Rewrite this equation in slope-intercept form. Reduce all fractions to lowest terms.
- **b.** Find the equation, in slope-intercept form, for the line which is **perpendicular** to this line and passes through the point (9, -3). Reduce all fractions to lowest terms.

(a) SLORE-INTERREDT:
$$Y=100 \times 10^{-5}$$
 $X+7Y=5Y-5$ $-X-5Y-5Y-X$

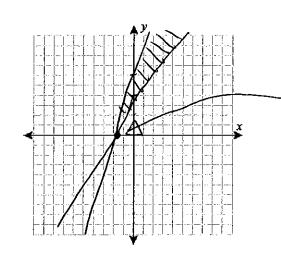
$$= 2Y = -X-5 \Rightarrow Y=-\frac{1}{2}X-\frac{5}{2}$$


(b) PERPENDICULAR to (a):
$$520P\bar{s} = -\frac{1}{m} = -\frac{1}{-\frac{1}{2}} = 2 \Rightarrow \frac{1}{2} \times 2 \times 4b$$

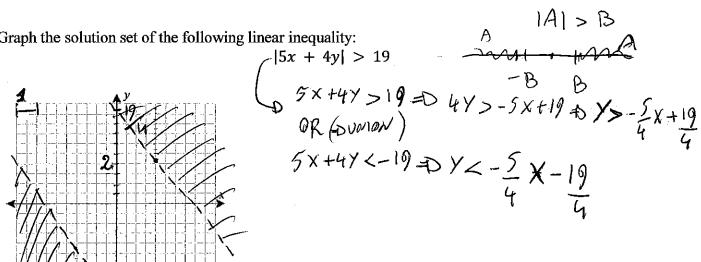
PLUB $X = 9, Y = -3 \Rightarrow -3 = 2(9) + b \Rightarrow b = -21$


Solve the system of two linear inequalities graphically. 3.

$$y \le 4x + 6 \text{ and } y > 2x + 3$$


Step 1. Graph the first linear inequality.

Step 2. Graph the second linear inequality.


- Step 3. Graph both inequalities and highlight the solution set of this system of linear inequalities. Also, mark your selection A or B.
 - A) the union of the individual solution sets

the intersection of the individual solution sets

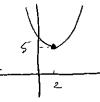
MOTE: CORNER POINT $\left(-\frac{3}{2}, 0\right)$ $\begin{cases} Y = 4 \times +6 \\ Y = 2 \times +3 \end{cases}$ $\begin{cases} Y = 2 \times +3 \\ Y = 2 \times +3 \end{cases}$ $\Rightarrow 2 \times = -3 \Rightarrow \times = -\frac{3}{2}$ $\Rightarrow Y = 2\left(-\frac{3}{2}\right) + 3 = 0$

4. Graph the solution set of the following linear inequality:

Find the standard form of the equation for the circle described below. 5. Center (-1, -6) and radius 2

$$(x-x_0)^2 + (y-y_0)^2 = R^2$$

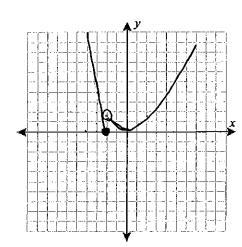
$$(x-(-1))^2 + (y-(-6))^2 = 2^2$$


$$(x+1)^2 + (y+6)^2 = 4$$

6. Consider the following quadratic function.

$$g(x) = (x - 5)^2 + 2$$

- a. Find the vertex of this function.
- **b.** Determine the x-intercept(s).


NOTE: VERTEX ABOVE X-AXIL AND LEADING LOEFF. POSITIVE D PARABOOLA VEWARD NOT INTERSECTING THE X-AXIS //

7. Graph the following function.

$$t(x) = \begin{cases} -5x - 10 & \text{if } x \leq -2 & \text{or stable at the fit} \\ \frac{2}{5}x^2 & \text{if } x > -2 & \text{or paramater on Right} \end{cases}$$

PARABOLA AT X = -2: Y = \(\frac{2}{5} (-2)^2 = \frac{8}{5} = 1.6

8. The volume of a gas in a container varies inversely as the pressure on the gas. If a gas has a volume of 171 cubic inches under a pressure of 3 pounds per square inch, what will be its volume if the pressure is increased to 4 pounds per square inch? (Round off your answer to the nearest integer.)

9. For $f(x) = \frac{1}{x}$ and $g(x) = \frac{x-5}{2}$

Step 1. Determine the formula and domain for $(f \circ g)(x)$. Write your answer in simplest form. Round your answer to two decimal places, if necessary.

$$d(g(x)) = \frac{1}{(x-5)} = \frac{2}{x-5}$$

DomAld: $X-5 \neq 0 \Rightarrow 0 \times \neq 5$ or $(-\infty, 5) \cup (5, +\infty)$

Step 2. Compute $(g \circ f)(-1)$.

$$(801)(-1) = g(f(-1)) = g(-1) = g(-1) = \frac{-1-5}{2} = -3$$

Consider the function 10.

$$P(x) = 4\sqrt[3]{x} + 4$$

- a. Find a formula for the inverse of the given function, if possible. If the function does not have an inverse, write "does not have an inverse function".
- b. Check your answer in a. by computing the compositions.

(a) 1) SWAP X ANDY:
$$X = 4\sqrt[3]{y} + 4$$
2) SOLVE FORY: $4\sqrt[3]{y} = x - 4 \Rightarrow \sqrt[3]{y} = \frac{x - 4}{4} \Rightarrow y = \left(\frac{x - 4}{4}\right)^3$
(b) CHECK:

(b) CHECK:
$$(\frac{x-4}{4})$$

T) $P(P^{-1}(x)) = 4\sqrt[3]{(\frac{x-4}{4})^3} + 4 = 4\sqrt{\frac{x-4}{4}} + 4 = x$

I)
$$P(P'(x)) = 4\sqrt[3]{\frac{x-4}{4}} + 4 = 4\sqrt{\frac{x-4}{4}} + 4 = x$$

II) $P'(P(x)) = (\frac{(4\sqrt[3]x+4)-4}{4})^3 = (\sqrt[4]x)^3 = x$