MAT 320 — Exam3 — Fall 2015

Instructor: Dr. Francesco Strazzullo Name V[ﬁ-' )/

I certify that I did not receive third party help in completing this test (sign)

Instructions. Technology is allowed on this exam. Each problem is worth 10 points, except numbers 7 and 8. If you use
formulas or properties from our book, make a reference. When using technology describe which commands (or keys
typed) you used or print out and attach your worksheet.

SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).

DLet H={a+ bx* + cx* €P,: b = a— c} be asubset of the real vector space of polynomials of degree at most 4.
If H is a subspace of P, then provide one of its bases, otherwise show which property of subspaces /7 does not sat-

isfy.
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2)Let € = { )= [{1} _21] C, { 11 é} 3 = [i g]} be a subset of the real vector space of the 2-by-2 matrices
Mz,z.

(a) Use the standard basis £ = {[é g , [(1) g], [g {1} ) [g (1}]} to prove that C is linearly independent (Hint:

for each C; € C consider the vector of components (or coordinate vector) [C;lc.)
(b) Use part (a) to extend € to a basis for M.
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21 1[0 0 11 127111
-1}, |1 ,[ OB and C = [0‘,{1] 0|¢ of R3.
11131 11 0l 10013
(a) Find P2, the change-of-coordinates matrix from B to C.
1
(b) Compute [x]p for x = [-—1 .
1

(¢) Use part (a) and (b) to compute [x]¢. ( > @[ J
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4) Consider two bases B = {b,b,} and C = {¢,¢,} of areal vector space V such that
b1 = 3C1 + 2C2 and bz = _'4‘(,'1 + SCZ.
Suppose that x is a vector in V such that x = 3b; — by, thatis [x]z = {_31]
(a) Find P2, the change-of-coordinates matrix from B to C.
{b) Compute [x]e.
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5)Consider € = {p; = 2x — x5, p; =3 —x,p3 = x +x%,py = 1 —x — x3} in P, , the real vector space of

polynomials of degree at most 3.

(a) Use the standard basis £ = {1, x,x% %’} to prove that € a basis for P3 (write down what the definition of a basis
is and which theorem you use to justify your answer).

(b) Compute [Z + x — x%4+x3]p.

A o
.y A 2 !
(@) [6]: [[Pl Jg' [E{ }E]: j éb =

P — N
WHew By e ywade RePn. T € 15 L il BYI ol 13 Xy
Tew € S AmAYIAAL SeT oF Lin in). VECT, TS A BASIS

£ . L g *12
(o) [€1-F, wo [71- ] 7] =[] f/?
| ' TeLy

W

R"" a——
,_ﬁz,giq

9 [ S—

-\
)
@

]




MAT 320 — Exam3 - Fall 20135

6) Let L: R® — R® be the linear mapping defined by
L(bl) = sz + bg, L(bz) - b]_ + 3b2 ,and L(bg) - bl + bz — b3 '
where B = {by, by, b3} is a basis of R®. Find [L}g, the matrix of the linear operator  relative to B.
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1) (20 points) Let L: P, — P, be the linear mapping defined by
L(1+2x) =3+, Lx+x*)=2—x,and L3~ x?) =1+x+x*,
where B = {p; = 1+ 2x,p, = x + %, p3 = 3 — x*} is a basis of P,, the real vector space of polynomials of de-
gree at most 2. Let & = {1,x,x%} be the standard basis of P;.
(a) Find P2, the change-of-coordinates matrix from B to £.
(b) Find [L]Z, the matrix of the linear operator L relative to B and E.
(c) Find [L]g, the matrix of the linear operator L relative to B.
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8) (20 points) Let L: P; — R® be the linear mapping defined by
LD =(1,01), Lx)=(0,-11), LG =(21,-1),and L) = (3,1,0).
(a) Find a basis for Ker(L).
(b) Find a basis for Range(L).
(¢) Use part (a) and (b) to check the Rank-Nullity Theorem.
(d) Specify why I is or is not 1-to-1.
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