Instructor: Dr. Francesco Strazzullo

| Name | KEY |  |
|------|-----|--|
|      |     |  |

I certify that I did not receive third party help in *completing* this test (sign)

**Instructions.** Technology is allowed on this exam. Each problem is worth 10 points, except numbers 7 and 8. If you use formulas or properties from our book, make a reference. When using technology describe which commands (or keys typed) you used or print out and attach your worksheet.

SHOW YOUR WORK NEATLY, PLEASE (no work, no credit).

1) Let  $H = \{a + bx^3 + cx^4 \in P_4 : b = a - c\}$  be a subset of the real vector space of polynomials of degree at most 4. If H is a subspace of  $P_4$  then provide one of its bases, otherwise show which property of subspaces H does not satisfy.

$$\vec{P} \in H$$
 and  $\vec{p} = \alpha + (\alpha - c)x^3 + cx^4 = \alpha + \alpha x^3 - cx^3 + cx^4$  and  $\vec{P} = \alpha (1 + x^3) + c (-x^3 + x^4)$  and  $\vec{P} \in Spoin \{1 + x^3, -x^3 + x^4\}$ 

Therefore  $H = Spain \{1 + x^3, -x^3 + x^4\}$  is a Vect. Substact. Because  $1 + x^3 \neq t \cdot (-x^3 + x^4)$  for All near numbers  $t$ , then  $\{1 + x^3, -x^3 + x^4\}$  is linearly independent, Thus A BASIS FOR  $H$ .

- 2) Let  $C = \left\{ C_1 = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, C_2 = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}, C_3 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \right\}$  be a subset of the real vector space of the 2-by-2 matrices  $M_{2,2}$ .
  - (a) Use the standard basis  $\mathcal{E} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$  to prove that  $\mathcal{C}$  is linearly independent (Hint: for each  $C_i \in \mathcal{C}$  consider the vector of components (or coordinate vector)  $[C_i]_{\mathcal{E}}$ .)
  - (b) Use part (a) to extend C to a basis for  $M_{2,2}$ .

(a) 
$$\begin{bmatrix} C_i \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix}$$
 (b)  $C_i = \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} + \begin{bmatrix} t_2 \\ t_3 \end{bmatrix} + \begin{bmatrix} t_3 \\ t_2 \end{bmatrix} + \begin{bmatrix} t_4 \\ t_2 \end{bmatrix}$ 

$$= \begin{bmatrix} t_1 & t_3 \\ t_2 & t_4 \end{bmatrix}$$

BY THE "UNIQUE REPRESENTATION THEOREM" 
$$C$$
 IS LIN. INDEP. IF

AND ONLY IF  $\left[C_1\right]$ ,  $\left[C_2\right]$ ,  $\left[C_3\right]$   $\left[C_3\right]$   $\left[C_3\right]$   $\left[C_3\right]$   $\left[C_4\right]$ ,  $\left[C_4\right]$ ,  $\left[C_5\right]$   $\left[C_5\right$ 

(b) ORLATÓ RREF ([C]) WITH "MISSING" PIVOTAL E: IN OUR CASÓ 
$$\vec{e}_{4}$$
 =  $[E_{22}]_{\epsilon}$  Then  $\{c_{1}, c_{2}, c_{3}, E_{22}\}$  Is A BASIR.

3) Consider two bases 
$$\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \right\}$$
 and  $\mathcal{C} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} \right\}$  of  $\mathbb{R}^3$ .

(a) Find  $P_{\mathcal{C}}^{\mathcal{B}}$ , the change-of-coordinates matrix from  $\mathcal{B}$  to  $\mathcal{C}$ .

**(b)** Compute 
$$[x]_B$$
 for  $x = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ .

(c) Use part (a) and (b) to compute 
$$[x]_{\mathcal{C}}$$
.

(b) Compute 
$$[x]_B$$
 for  $x = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$   
(c) Use part (a) and (b) to compute  $[x]_C$ .  
(a)  $P_C^B = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_3 \end{bmatrix} \begin{bmatrix} b_2 \\ b_4 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \begin{bmatrix} b_2 \\ b_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_3 \end{bmatrix} \begin{bmatrix} b_2 \\ b_4 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_4 \end{bmatrix} \begin{bmatrix} b_2 \\ b_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_4 \end{bmatrix} \begin{bmatrix} b_2 \\ b_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_4 \end{bmatrix} \begin{bmatrix} b_1 \\ b_4$ 

PB \* PE PB = [e]-[B] = [11/3 -3 1/3]

PB \* PE PB = [e]-[B] = [-1 1 0]

TECHNOLOGY

\* BECAUSÚ [
$$\vec{b}$$
:] =  $\vec{P}$ E[ $\vec{b}$ :] =D THE J-TH COLUMN OF  $\vec{P}$ E IS

THE J-TH COLUMN OF THE PRODUCT  $\vec{P}$ E  $\vec{P}$ B = ( $\vec{P}$ E)  $\vec{P}$ B

THE J-TH COLUMN OF THE PRODUCT  $\vec{P}$ E  $\vec{P}$ B = ( $\vec{P}$ E)  $\vec{P}$ B

(b) 
$$\begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1/2 \\ -1/2 \end{bmatrix} = \begin{bmatrix} 1/2 \\ -2 \end{bmatrix} = \begin{bmatrix} 1/2 \\ -4 \end{bmatrix}$$

(e) 
$$\begin{bmatrix} \vec{X} \end{bmatrix} = \begin{bmatrix} \theta \\ \vec{X} \end{bmatrix} = \begin{bmatrix} 8/3 \\ -1 \end{bmatrix} = \begin{bmatrix} 8 \\ -3 \\ 1/3 \end{bmatrix}$$

4) Consider two bases  $\mathcal{B} = \{ \boldsymbol{b}_1, \boldsymbol{b}_2 \}$  and  $\mathcal{C} = \{ \boldsymbol{c}_1, \boldsymbol{c}_2 \}$  of a real vector space  $\mathbb{V}$  such that  $\boldsymbol{b}_1 = 3\boldsymbol{c}_1 + 2\boldsymbol{c}_2$  and  $\boldsymbol{b}_2 = -4\boldsymbol{c}_1 + 5\boldsymbol{c}_2$ .

Suppose that x is a vector in  $\mathbb{V}$  such that  $x = 3b_1 - b_2$ , that is  $[x]_{\mathcal{B}} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ .

- (a) Find  $P_{\mathcal{C}}^{\mathcal{B}}$ , the change-of-coordinates matrix from  $\mathcal{B}$  to  $\mathcal{C}$ .
- **(b)** Compute  $[x]_{\mathcal{C}}$ .

(a) 
$$P_{e}^{B} = [[b_{1}]_{e} [b_{2}]_{e}] = [\frac{3}{2}, \frac{4}{5}]$$
  
(b)  $[\vec{x}]_{e} = P_{e}^{B} . [\vec{x}]_{B} = [\frac{3}{2}, \frac{4}{5}] . [\frac{3}{1}]_{e} = [\frac{13}{1}]_{e}$ 

- 5) Consider  $C = \{ p_1 = 2x x^3, p_2 = 3 x, p_3 = x + x^2, p_4 = 1 x x^3 \}$  in  $P_3$ , the real vector space of polynomials of degree at most 3.
  - (a) Use the standard basis  $\mathcal{E} = \{1, x, x^2, x^3\}$  to prove that  $\mathcal{C}$  a basis for  $P_3$  (write down what the definition of a basis is and which theorem you use to justify your answer).

**(b)** Compute 
$$[2 + x - x^2 + x^3]_c$$
.

(a) 
$$\begin{bmatrix} e \end{bmatrix} = \begin{bmatrix} e \end{bmatrix} \begin{bmatrix} e$$

THEN BY THE UNIQUE REPR. TH. C IS LIN. INU. , BUT dim 13=4, THEN E IS A MAXIMAL SET OF LIN. IND. VECT, THUS A BASIS.

(b) 
$$[e] = P_{\varepsilon}^{\ell}$$
 AND  $[\vec{x}]_{\varepsilon} = [\ell]^{-1}[\vec{x}]_{\varepsilon} = [\ell]^{-1}[\vec{x}]_{\varepsilon}$ 

$$[\vec{x}]_{\varepsilon} = [\ell]^{-1}[\vec{x}]_{\varepsilon} = [\ell]^{-1}[\vec{x}]_{\varepsilon}$$

$$[\vec{x}]_{\varepsilon} = [\ell]^{-1}[\vec{x}]_{\varepsilon} = [\ell]^{-1}[\vec{x}]_{\varepsilon}$$
Tech

6) Let  $L: \mathbb{R}^3 \to \mathbb{R}^3$  be the linear mapping defined by

$$L(\boldsymbol{b}_1) = 2\boldsymbol{b}_2 + \boldsymbol{b}_3$$
,  $L(\boldsymbol{b}_2) = \boldsymbol{b}_1 + 3\boldsymbol{b}_2$ , and  $L(\boldsymbol{b}_3) = \boldsymbol{b}_1 + \boldsymbol{b}_2 - \boldsymbol{b}_3$ ,

where  $\mathcal{B} = \{\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3\}$  is a basis of  $\mathbb{R}^3$ . Find  $[L]_{\mathcal{B}}$ , the matrix of the linear operator L relative to  $\mathcal{B}$ .

$$[L]_{\mathcal{B}} = [[L(\vec{b}_1)]_{\mathcal{B}} [L(\vec{b}_2)]_{\mathcal{B}} [L(\vec{b}_3)]_{\mathcal{B}}]$$

$$=\begin{bmatrix} 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

7) (20 points) Let  $L: P_2 \longrightarrow P_2$  be the linear mapping defined by

$$L(1+2x) = 3 + x^2$$
,  $L(x+x^2) = 2 - x$ , and  $L(3-x^2) = 1 + x + x^2$ ,

where  $\mathcal{B} = \{ \boldsymbol{p}_1 = 1 + 2x, \boldsymbol{p}_2 = x + x^2, \boldsymbol{p}_3 = 3 - x^2 \}$  is a basis of  $P_2$ , the real vector space of polynomials of degree at most 2. Let  $\mathcal{E} = \{1, x, x^2\}$  be the standard basis of  $P_2$ .

- (a) Find  $P_{\mathcal{E}}^{\mathcal{B}}$ , the change-of-coordinates matrix from  $\mathcal{B}$  to  $\mathcal{E}$ .
- (b) Find  $[L]_{\mathcal{E}}^{\mathcal{B}}$ , the matrix of the linear operator L relative to  $\mathcal{B}$  and  $\mathcal{E}$ .
- (c) Find  $[L]_{\mathcal{B}}$ , the matrix of the linear operator L relative to  $\mathcal{B}$ .
- (d) Find L(x).

(a) 
$$P_{e}^{\mathcal{B}} = [\mathcal{B}] = [\mathcal{P}_{e}]_{e} [\mathcal{P}_{e}]_{e} [\mathcal{P}_{e}]_{e} [\mathcal{P}_{e}]_{e} [\mathcal{P}_{e}]_{e} = [\mathcal{P}_{e}]_{e} [\mathcal{P}_{e}]_$$

(b) 
$$[L]_{\varepsilon}^{3} = [[L(\vec{p}_{s})]_{\varepsilon} [L(\vec{p}_{s})]_{\varepsilon} [L(\vec{p}_{s})]_{\varepsilon}] = [\frac{3}{3}, \frac{2}{3}, \frac{1}{3}]_{\varepsilon}$$

(e) 
$$[L]_{\mathcal{B}} = P_{\mathcal{B}}^{\mathcal{E}} [L]_{\mathcal{E}}^{\mathcal{B}} = (P_{\mathcal{E}}^{\mathcal{B}})^{\mathsf{T}} [L]_{\mathcal{E}}^{\mathcal{B}} = \frac{1}{5} \begin{bmatrix} -6 & -5 & -1 \\ 12 & 5 & 2 \end{bmatrix}$$

(d) Note Here the vector is 
$$P = X$$
:
$$[X]_{B} = P_{B}^{\varepsilon} [X]_{\varepsilon} = [B]^{-1} [\frac{3}{6}]_{\varepsilon} = \frac{1}{5} [\frac{3}{6}]_{\varepsilon}$$

$$[L(x)]_{B} = [L]_{B}^{\varepsilon} [X]_{B} = \frac{2}{25} [\frac{-6}{12}]_{\varepsilon}$$

$$[L(x)]_{\varepsilon} = P_{\varepsilon}^{\omega} [L(x)]_{B} = \frac{2}{5} [\frac{3}{6}]_{\varepsilon}$$

$$Therefore: L(x) = \frac{2}{5} (3 + x^{2})$$

8) (20 points) Let  $L: P_3 \to \mathbb{R}^3$  be the linear mapping defined by

$$L(1) = (1,0,1),$$
  $L(x) = (0,-1,1),$   $L(x^2) = (2,1,-1),$  and  $L(x^3) = (3,1,0).$ 

- (a) Find a basis for Ker(L).
- (b) Find a basis for Range(L).
- (c) Use part (a) and (b) to check the Rank-Nullity Theorem.
- (d) Specify why L is or is not 1-to-1.

CONSIDER [L] = 
$$\begin{bmatrix} L \end{bmatrix}_{\varepsilon^3}^{\varepsilon_3}$$
 THE MATRIX ASSOCIATED TO L WITH RESPECT TO THE STANDARD BASES  $\mathcal{E}_3 = \{1, X, X^2, X^3\}$  AND  $\mathcal{E}^3 = \{\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ , THEN:  $\begin{bmatrix} L \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & -1 & 1 & 1 \end{bmatrix}$ 

(a) 
$$Kor(L) = Span \{\vec{v}_1, \vec{v}_k\} \leq \vec{r}_3$$
 IF AND ONLY

IF NULL ([L]) = Span  $\{\vec{u}_1, \vec{v}_k\}$  with  $\vec{u}_i = [\vec{v}_i] \in \mathbb{R}^4$ 
 $\mathcal{E}_3$ 

$$RREF([L]) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = D NULL([L]) = Span \{(-1,0,-1,1)\}$$

$$t_1 \quad t_2 \quad t_3 \quad t_4 \quad -D \} \begin{cases} t_1 = -t_4 \\ t_2 = 0 \\ t_3 = -t_4 \end{cases} = Span \{(1,0,1,-1)\}$$

THUS Nor (L) = Span 
$$\left\{ 1 + \chi^2 - \chi^3 \right\}$$
 (NoTe: L(1) + L( $\chi^2$ ) - L( $\chi^3$ ) = 0)

Basis =  $\left\{ 1 + \chi^2 - \chi^3 \right\}$ 

USING RREF FROM (a), COL([L]) = Span [L(1), L(x), L(x²)] = R³, BECAUSE THOSE ARE 3 LIV. IND. VECTORS IN R³: BASIS = E³