PreCalculus Formulas

Sequences and Series:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•
$\frac{\text{Binomial Theorem}}{(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k}$	Arithmetic Last Term $a_n = a_1 + (n-1)d$	Geometric Last Term $a_n = a_1 r^{n-1}$
Find the r^{th} term	Arithmetic Partial Sum	Geometric Partial Sum
$\binom{n}{r-1}a^{n-(r-1)}b^{r-1}$	$S_n = n \left(\frac{a_1 + a_n}{2} \right)$	$S_n = a_1 \left(\frac{1 - r^n}{1 - r} \right)$

Complex and Polars:

DeMoivre's Theorem:

$$[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n \cdot \theta + i\sin n \cdot \theta)$$

$$r = \sqrt{a^2 + b^2} \qquad x = r\cos\theta$$

$$\theta = \arctan\frac{b}{a} \qquad y = r\sin\theta$$

$$(r,\theta) \to (x,y)$$

$$a + bi$$

$$i = \sqrt{-1}$$

$$i^2 = -1$$

Functions:

To find the inverse function: $f^{-1}(x)$	Composition of functions:
1. Set function = <i>y</i>	$(f \circ g)(x) = f(g(x))$
2. Interchange the variables	$(g \circ f)(x) = g(f(x))$
3. Solve for <i>y</i>	$(f \circ f^{-1})(x) = x$

Algebra of functions:
$$(f+g)(x) = f(x) + g(x)$$
; $(f-g)(x) = f(x) - g(x)$
 $(f \cdot g)(x) = f(x) \cdot g(x)$; $(f/g)(x) = f(x)/g(x)$, $g(x) \neq 0$
Domains:: $D(f(x)) \cap D(g(x))$

<u>Domain</u> (usable <i>x</i> 's)
Watch for problems with
zero denominators and with
negatives under radicals.

Difference Quotient
$$\frac{f(x+h)-f(x)}{h}$$
 terms not containing a mult. of h will be eliminated.

$$f(x) = \frac{x}{x^2 + x - 6}$$

Vertical asymptotes at
$$x = -3$$
 and $x = 2$

Asymptotes: (horizontal)

1.
$$f(x) = \frac{x+3}{x^2-2}$$

top power < bottom power means y = 0 (x-axis)

$$2. \quad f(x) = \frac{4x^2 - 5}{3x^2 + 4x + 6}$$

top power = bottom power means y = 4/3(coefficients)

3.
$$f(x) = \frac{x^3}{x+4}$$
 None!

top power > bottom power

Determinants:

$$\begin{vmatrix} 3 & 5 \\ 4 & 3 \end{vmatrix} = 3 \cdot 3 - 5 \cdot 4$$
 Use your calculator for 3x3 determinants.

Cramer's Rule:

$$ax + by = c$$

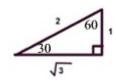
$$dx + ey = f$$

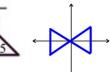
$$\begin{vmatrix} 1 \\ a \\ d \end{vmatrix} = \begin{vmatrix} c \\ f \end{vmatrix} \begin{vmatrix} a \\ e \end{vmatrix}, \begin{vmatrix} a \\ d \end{vmatrix} = c \end{vmatrix}$$

Also apply Cramer's rule to 3 equations with 3 unknowns.

Trig:

Reference Triangles:





$$\sin \theta = \frac{o}{h}; \quad \cos \theta = \frac{a}{h}; \quad \tan \theta = \frac{o}{a}$$
$$\csc \theta = \frac{h}{a}; \quad \sec \theta = \frac{h}{a}; \quad \cot \theta = \frac{a}{a}$$

$$\csc \theta = \frac{h}{o}$$
; $\sec \theta = \frac{h}{a}$; $\cot \theta = \frac{a}{o}$

Analytic Geometry:					Induction:
Circle $(x-h)^2 + (y-k)^2 = r^2$ Remember "completing the square" process for all conics.		Ellipse $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ larger denominator \rightarrow major axis and smaller denominator \rightarrow minor axis	 c → focus length where major length is hypotenuse of right triangle. Latus rectum lengths from focus are b²/a 	Eccentricity: e = 0 circle 0 < e < 1 ellipse e = 1 parabola e > 1 hyperbola	Find $P(1)$: Assume $P(k)$ is true: Show $P(k+1)$ is true:
$\frac{\text{Parabola}}{(x-h)^2} = 4a(y-k)$ $(y-k)^2 = 4a(x-h)$	vertex to focus = a , length to directrix = a , latus rectum length from focus = $2a$	$\frac{\frac{\text{Hyperbola}}{(x-h)^2}}{a^2} - \frac{(y-k)^2}{b^2} = 1$ Latus length from focus b^2/a	a→transverse axis b→conjugate axis c→focus where c is the hypotenuse. asymptotes needed	Rate of Growth/Decay: $y = y_0 e^{kt}$ $y = \text{end result}, y_0 = \text{start amount},$ Be sure to find the value of k first.	

Polynomials:

Polynomials:		
Remainder Theorem:	Synthetic Division	Depress equation
Substitute into the	Mantra:	
expression to find the	"Bring down, multiply	$b + \sqrt{b^2 - 4aa}$
remainder.	and add, multiply and	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
[$(x + 3)$ substitutes -3]	add"	2a
	[when dividing by $(x - 5)$,	(also use calculator to
	use +5 for synthetic	examine roots)
	division]	ŕ
Descartes' Rule of	Analysis of Roots	<u>Upper bounds</u> :
<u>Signs</u>	P N C Chart	All values in chart are +
1. Maximum possible #	* all rows add to the	Lower bounds:
of positive roots \rightarrow	degree	Values alternate signs
number of sign changes	* complex roots come in	No remainder: Root
$\inf f(x)$	conjugate pairs	
	* product of roots - sign	Sum of roots is the
2. Maximum possible #	of constant (same if	coefficient of second
of negative roots \rightarrow	degree even, opposite if degree odd)	term with sign changed.
number of sign changes	* decrease P or N entries	
$\inf(-x)$	by 2	Product of roots is the
	0,72	constant term (sign
		changed if odd degree,
		unchanged if even degree).

Far-left/Far-right Behavior of a Polynomial
The leading term $(a_n x^n)$ of the polynomial determines the far-left/far-right behavior of the graph according to the following chart. ("Parity" of $n \rightarrow$ whether n is odd or even.)

$a_n x^n$		LEFT-HAND BEHAVIOR		
		n is even (same as right)	n is odd (opposite right)	
RIGHT- HAND	$a_{\rm n} > 0$		negative $x < 0$	
BEHAVIOR		always positive	$\begin{array}{c c} \text{negative } x < 0 \\ \text{positive } x > 0 \end{array}$	
Leading Coefficient Test	$a_{\rm n}$ < 0			
		always negative	positive $x < 0$ negative $x > 0$	